• Title/Summary/Keyword: Artificial reality

Search Result 240, Processing Time 0.028 seconds

Trends in Neuromorphic Photonics Technology (뉴로모픽 포토닉스 기술 동향)

  • Kwon, Y.H.;Kim, K.S.;Baek, Y.S.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.34-41
    • /
    • 2020
  • The existing Von Neumann architecture places limits to data processing in AI, a booming technology. To address this issue, research is being conducted on computing architectures and artificial neural networks that simulate neurons and synapses, which are the hardware of the human brain. With high-speed, high-throughput data communication infrastructures, photonic solutions today are a mature industrial reality. In particular, due to the recent outstanding achievements of artificial neural networks, there is considerable interest in improving their speed and energy efficiency by exploiting photonic-based neuromorphic hardware instead of electronic-based hardware. This paper covers recent photonic neuromorphic studies and a classification of existing solutions (categorized into multilayer perceptrons, convolutional neural networks, spiking neural networks, and reservoir computing).

Future Radio Technology (미래 전파기술)

  • Kim, B.C.;Park, S.T.;Kang, K.O.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.6
    • /
    • pp.66-72
    • /
    • 2017
  • The frequency range of a radio wave is from 3kHz to 300GHz, and radio technologies use this range to improve the quality of human lives. Radio technologies have entered a new phase of communication. The core infrastructure used as the basis for technologies leading the fourth industrial evolution, such as artificial intelligence, the Internet of Things, autonomous cars/drones, augmented reality, robots, and remote medical diagnoses, is the 5G network. The 5G network enables transmitting and receiving large amounts of data at very high speed. In particular, application technologies with artificial intelligence have been studied, including radar, wireless charging, electromagnetic devices and their effects on humans, EMI/EMC, and microwave imaging. In this study, we present a future radio technology that is needed to prepare for the upcoming industrial revolution and digital transformation.

Artificial Intelligence Techniques in Game Contents

  • Ko Sang-Su;Chae Song-Hwa;Nam Byung-Woo;Kim Won-Il
    • International Journal of Contents
    • /
    • v.2 no.3
    • /
    • pp.18-21
    • /
    • 2006
  • Nowadays, many people enjoy playing games in computer. In this kind of game, people often meet NPC (Non Player Character). It is the virtual character in simplified form of real player and exits in most of current computer games. Various NPCs add the reality and atmosphere of the game as well as help players. There are several techniques to embody NPC, but developers generally use AI technique. This paper discusses some artificial intelligence techniques used in game contents. Especially this paper focuses on the AI techniques used in computer games in terms of the two main approaches, symbolic approach and sub-symbolic approach.

  • PDF

Evaluation of Artificial Intelligence-Based Denoising Methods for Global Illumination

  • Faradounbeh, Soroor Malekmohammadi;Kim, SeongKi
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.737-753
    • /
    • 2021
  • As the demand for high-quality rendering for mixed reality, videogame, and simulation has increased, global illumination has been actively researched. Monte Carlo path tracing can realize global illumination and produce photorealistic scenes that include critical effects such as color bleeding, caustics, multiple light, and shadows. If the sampling rate is insufficient, however, the rendered results have a large amount of noise. The most successful approach to eliminating or reducing Monte Carlo noise uses a feature-based filter. It exploits the scene characteristics such as a position within a world coordinate and a shading normal. In general, the techniques are based on the denoised pixel or sample and are computationally expensive. However, the main challenge for all of them is to find the appropriate weights for every feature while preserving the details of the scene. In this paper, we compare the recent algorithms for removing Monte Carlo noise in terms of their performance and quality. We also describe their advantages and disadvantages. As far as we know, this study is the first in the world to compare the artificial intelligence-based denoising methods for Monte Carlo rendering.

A Study on artificial lighting source using X3D (X3D를 이용한 인공조명에 관한 연구)

  • Park, Gyung-Bae;Kang, Kyung-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.3
    • /
    • pp.111-119
    • /
    • 2010
  • An artificial light source has a character that a light emits from a point to all directions with many radial and straight ray shapes. It is very difficult and complex to render those emitting lights. Also, users have difficulty in expressing exactly 3D objects because of colors varying with changing of a light and having many parameters. In this paper, to solve those problems we design an artificial light source using X3D to create a model that represents easily many radial and straight ray shapes and propose the online system that each factors of colors to be reflected by a light is separated and then users can control them to detect object's colors by a mouse. Various light sources with reality can be easily created using proposed system.

A Case Study on the Recommendation Services for Customized Fashion Styles based on Artificial Intelligence (인공지능에 의한 개인 맞춤 패션 스타일 추천 서비스 사례 연구)

  • An, Hyosun;Kwon, Suehee;Park, Minjung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.3
    • /
    • pp.349-360
    • /
    • 2019
  • This study analyzes the trends of recommendation services for customized fashion styles in relation to artificial intelligence. To achieve this goal, the study examined filtering technologies of collaborative, content based, and deep-learning as well as analyzed the characteristics of recommendation services in the users' purchasing process. The results of this study showed that the most universal recommendation technology is collaborative filtering. Collaborative filtering was shown to allow intuitive searching of similar fashion styles in the cognition of need stage, and appeared to be useful in comparing prices but not suitable for innovative customers who pursue early trends. Second, content based filtering was shown to utilize body shape as a key personal profile item in order to reduce the possibility of failure when selecting sizes online, which has limits to being able to wear the product beforehand. Third, fashion style recommendations applied with deep-learning intervene with all user processes of buying products online that was also confirmed to penetrate into the creative area of image tag services, virtual reality services, clothes wearing fit evaluation services, and individually customized design services.

Development of Gas Plant Safety Training Content using VR-based Dynamic Visualization Components (가상현실 기반 동적 가시화 컴포넌트를 이용한 가스 플랜트 안전훈련 콘텐츠 개발)

  • Lee, Gyungchang;Yu, Chulhee;Chung, Kyo-il;Youn, Cheong
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.89-94
    • /
    • 2017
  • The VR(Virtuality Reality) technology provides very close experience to reality by stimulating humans' external recognition with artificial technologies. In order to overcome the limitation of real-environment training, VR is being applied in industry field as a key technology to prevent safety accident and its control procedure training. However, it is difficult to build VR-based training system because 3D modeling and software coding are necessary for materialization of VR environment demands of many development resource. In this research referring to VR based training content implementation, a method to utilizing VRDC(VR-based Dynamic visualization Component) is suggested and by applying it to plant safety training system, it was confirmed its practicality.

Augmented Reality to Localize Individual Organ in Surgical Procedure

  • Lee, Dongheon;Yi, Jin Wook;Hong, Jeeyoung;Chai, Young Jun;Kim, Hee Chan;Kong, Hyoun-Joong
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.394-401
    • /
    • 2018
  • Objectives: Augmented reality (AR) technology has become rapidly available and is suitable for various medical applications since it can provide effective visualization of intricate anatomical structures inside the human body. This paper describes the procedure to develop an AR app with Unity3D and Vuforia software development kit and publish it to a smartphone for the localization of critical tissues or organs that cannot be seen easily by the naked eye during surgery. Methods: In this study, Vuforia version 6.5 integrated with the Unity Editor was installed on a desktop computer and configured to develop the Android AR app for the visualization of internal organs. Three-dimensional segmented human organs were extracted from a computerized tomography file using Seg3D software, and overlaid on a target body surface through the developed app with an artificial marker. Results: To aid beginners in using the AR technology for medical applications, a 3D model of the thyroid and surrounding structures was created from a thyroid cancer patient's DICOM file, and was visualized on the neck of a medical training mannequin through the developed AR app. The individual organs, including the thyroid, trachea, carotid artery, jugular vein, and esophagus were localized by the surgeon's Android smartphone. Conclusions: Vuforia software can help even researchers, students, or surgeons who do not possess computer vision expertise to easily develop an AR app in a user-friendly manner and use it to visualize and localize critical internal organs without incision. It could allow AR technology to be extensively utilized for various medical applications.

Smoke Modeling and Rendering Techniques using Procedural Functions (절차적 함수를 이용한 연기 모델링 및 렌더링 기법)

  • Park, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.905-912
    • /
    • 2022
  • Virtual reality, one of the core technologies of the 4th industrial revolution, is entering a new phase with the spread of low-cost wearable devices represented by Oculus. In the case of disaster evacuation drills, where practical training is almost impossible due to the risk of accidents, virtual reality is becoming a new alternative that enables effective training. In this paper, we propose a smoke modeling method that can be applied to fire evacuation drills implemented with virtual reality technology. In the event of a fire, smoke spreads along the aisle, and the density of the smoke changes over time. The proposed method models the smoke by applying a procedural function that can reflect the density of smoke calculated through simulation to the model in real-time. Implementation results in the background of the factory show that the proposed method produces models that can express the smoke according to the user's movement.

Optimizing CNN Structure to Improve Accuracy of Artwork Artist Classification

  • Ji-Seon Park;So-Yeon Kim;Yeo-Chan Yoon;Soo Kyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.9-15
    • /
    • 2023
  • Metaverse is a modern new technology that is advancing quickly. The goal of this study is to investigate this technique from the perspective of computer vision as well as general perspective. A thorough analysis of computer vision related Metaverse topics has been done in this study. Its history, method, architecture, benefits, and drawbacks are all covered. The Metaverse's future and the steps that must be taken to adapt to this technology are described. The concepts of Mixed Reality (MR), Augmented Reality (AR), Extended Reality (XR) and Virtual Reality (VR) are briefly discussed. The role of computer vision and its application, advantages and disadvantages and the future research areas are discussed.