• 제목/요약/키워드: Artificial proteases

검색결과 6건 처리시간 0.016초

Immobile Artificial Metalloproteases

  • Kim, Myoung-Soon;Suh, Jung-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권12호
    • /
    • pp.1911-1920
    • /
    • 2005
  • Effective artificial metalloproteases have been designed by using cross-linked polystyrene as the backbone. Artificial active sites comprising Cu(II) complexes as the catalytic site and other metal centers or organic functionalities as binding sites were synthesized. The activity of Cu(II) centers for peptide hydrolysis was greatly enhanced on attachment to polystyrene. By placing binding sites in proximity to the catalytic centers, the ability to hydrolyze a variety of protein substrates at selected cleavage sites was improved. Thus far, the most advanced immobile artificial proteases have been obtained by attaching the aldehyde group in proximity to the Cu(II) complex of cyclen.

Artificial Metalloproteases with Broad Substrate Selectivity Constructed on Polystyrene

  • Ko, Eun-Hwa;Suh, Jung-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권12호
    • /
    • pp.1917-1923
    • /
    • 2004
  • Although the proteolytic activity of the Cu(II) complex of cyclen (Cyc) is greatly enhanced upon attachment to a cross-linked polystyrene (PS), the Cu(II)Cyc-containing PS derivatives reported previously hydrolyzed only a very limited number of proteins. The PS-based artificial metalloproteases can overcome thermal, mechanical, and chemical instabilities of natural proteases, but the narrow substrate selectivity of the artificial metalloproteases limits their industrial application. In the present study, artificial metalloproteases exhibiting broad substrate selectivity were synthesized by attaching Cu(II)Cyc to a PS derivative using linkers with various structures in an attempt to facilitate the interaction of various protein substrates with the PS surface. The new artificial metalloproteases hydrolyzed all of the four protein substrates (albumin, myoglobin, ${\gamma}$-globulin, and lysozyme) examined, manifesting $k_{cat}/K_m$ values of 28-1500 $h_{-1}M_{-1}$ at 50 $^{\circ}C$. The improvement in substrate selectivity is attributed to steric and/or polar interaction between the bound protein and the PS surface as well as the hydrophobicity of the microenvironment of the catalytic centers.

Overproduction of Streptomyces griseus Protease A and B Induces Morphological Changes in Streptomyces lividans

  • Chi, Won-Jae;Kim, Jung-Mee;Choi, Si-Sun;Kang, Dae-Kyung;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권6호
    • /
    • pp.1077-1086
    • /
    • 2001
  • The sprA and sprB gene encoding chymotrypsin-like proteases Streptomyces griseus protease A (SGPA) and Streptomyces griseus protease B (SGPB) and the sprT gene that encodes Streptomyces griseus trypsin (SGT) were cloned from Streptomyces griseus ATCC10137 and overexpressed in Streptomyces lividans TK24 as a heterologous host. The chymotrypsin activity of tole culture broth measured with the artificial chromogenic substrate , N-succinyl-ala-ala-pro-phe-p-nitroanilide, was 10, 14 and 14 units/mg in the transformants haboring the sprA, sprB and sprD genes, respectively. The growth of S. lividans reached the maximum cell mass after 4 days of culture, yet SGPA and SGPD production started in the stationary phase of cell growth and kept increasing for up to 10 days of culture in an R2YE medium. The trypsin activity of the culture broth measured with the artificial chromogenic substrate , N-${\alpha}$-benzoyl-DL- arginine-p-nitroanilide , was 16 units/mg and SGT production started in the stationary phase of cell growth and kept increasing for up to 10 days of culture in an R2YE medium. The introduction of the sprA gene into S, lividans TK24 triggered the biosynthesis of pigmented antibiotics, actinorhodin and undecylprodigiosin, and induced significant morphological changes in the colonies in Benedict, R2YE, and R1R2 media. In addition, the introduction of the sprT gene also induced morphological changes in the colony shape without affecting the antibiotic production, thereby implying that certain proteases would appear to play very important and specific roles in secondary-metabolites formation and morphological differentiation in Streptomyces.

  • PDF

Identification of the sprU Gene Encoding an Additional sprT Homologous Trypsin-Type Protease in Streptomyces griseus

  • YANG HYE-YOUNG;CHOI SI-SUN;CHI WON-JAE;KIM JONG-HEE;KANG DAE-KYUNG;CHUN JAESUN;KANG SANG-SOON;HONG SOON-KWANG
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.1125-1129
    • /
    • 2005
  • Cloning of a 6.6-kb BamHI digested chromosomal DNA from S. griseus IFO13350 revealed the presence of an additional gene encoding a novel trypsin-like enzyme, named SprU. The SprU protein shows a high homology ($79\%$ identity, $88\%$ similarity) with the SGT protease, which has been reported as a bacterial trypsin in the same strain. The amino acid sequence deduced from the nucleotide sequence of the sprU gene suggests that SprU is produced as a precursor consisting of an amino-terminal presequence (29 amino acid residues), prosequence (4 residues), and mature trypsin consisting of 222 amino acids with a molecular weight of 22.94 kDa and a calculated pI of 4.13. The serine, histidine, and aspartic acid residues composing the catalytic triad of typical serine proteases are also well conserved. When the trypsin activity of the SprU was spectrophotometrically measured by the enzymatic hydrolysis of the artificial chromogenic substrate, N-${alpha}$-benzoyl-DL-arginine-p-nitroanilide, the S. lividans transformant with pWHM3-U gave 3 times higher activity than that of control. When the same recombinant plasmid was introduced into S. griseus, however, the gene dosage effect was not so significant, as in the cases of other genes encoding serine proteases, such as sprA, sprB, and sprD. Although two trypsins, SprU and SGT, have a high degree of homology, the pI values, the gene dosage effect in S. griseus, and the gene arrangement adjacent to the two genes are very different, suggesting that the biochemical and biological function of the SprU might be quite different from that of the SGT.

Properties of a Fibrinolytic Enzyme Secreted by Bacillus amyloliquefaciens RSB34, Isolated from Doenjang

  • Yao, Zhuang;Liu, Xiaoming;Shim, Jae Min;Lee, Kang Wook;Kim, Hyun-Jin;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권1호
    • /
    • pp.9-18
    • /
    • 2017
  • Nine bacilli with fibrinolytic activities were isolated from doenjang, a traditional Korean fermented soy food. Among them, RSB34 showed the strongest activity and was identified as Bacillus amyloliquefaciens by 16S rRNA and recA gene sequencing. During growth on LB up to 96 h, RSB34 showed the highest fibrinolytic activity ($83.23mU/{\mu}l$) at 48 h. Three bands of 23, 27, and 42 kDa in size were observed when the culture supernatant was analyzed by SDS-PAGE and 27 and 42 kDa bands by fibrin zymography. The gene encoding the 27 kDa fibrinolytic enzyme AprE34 was cloned by PCR. BLAST analyses confirmed that the gene was a homolog to genes encoding AprE-type proteases. aprE34 was overexpressed in Escherichia coli BL21(DE3) using pET26b(+). Recombinant AprE34 was purified and examined for its properties. The $K_m$ and $V_{max}$ values of recombinant AprE34 were $0.131{\pm}0.026mM$ and $16.551{\pm}0.316{\mu}M/l/min$, respectively, when measured using an artificial substrate, N-succinyl-ala-ala-pro-phe-p-nitroanilide. aprE34 was overexpressed in B. subtilis WB600 using pHY300PLK. B. subtilis transformants harboring pHYRSB34 (pHY300PLK with aprE34) showed higher fibrinolytic activity than B. amyloliquefaciens RSB34.