• Title/Summary/Keyword: Artificial neural network analysis

Search Result 1,007, Processing Time 0.027 seconds

A Stochastic Nonlinear Analysis of Daily Runoff Discharge Using Artificial Intelligence Technique (인공지능기법을 이용한 일유출량의 추계학적 비선형해석)

  • 안승섭;김성원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.6
    • /
    • pp.54-66
    • /
    • 1997
  • The objectives of this study is to introduce and apply neural network theory to real hydrologic systems for stochastic nonlinear predicting of daily runoff discharge in the river catchment. Back propagation algorithm of neural network model is applied for the estimation of daily stochastic runoff discharge using historical daily rainfall and observed runoff discharge. For the fitness and efficiency analysis of models, the statistical analysis is carried out between observed discharge and predicted discharge in the chosen runoff periods. As the result of statistical analysis, method 3 which has much processing elements of input layer is more prominent model than other models(method 1, method 2) in this study.Therefore, on the basis of this study, further research activities are needed for the development of neural network algorithm for the flood prediction including real-time forecasting and for the optimal operation system of dams and so forth.

  • PDF

Design of Intelligent Material Quality Control System based on Pattern Analysis using Artificial Neural Network (인공 신경망의 패턴분석에 근거한 지능적 부품품질 관리시스템의 설계)

  • 이장희;유성진;박상찬
    • Journal of Korean Society for Quality Management
    • /
    • v.29 no.4
    • /
    • pp.38-53
    • /
    • 2001
  • In resolving industrial quality control problems, a vector of multiple quality characteristic variables is involved rather than a single variable. However, it is not guaranteed that a multivariate control chart based on statistical methods can monitor abnormal signal in case that small changes of relationship between each variables causes abnormal production process. Hence a quality control system for real-time monitoring of the multi-dimensional quality characteristic vector under a multivariate normal process is needed to enhance tile production system quality performance. A pattern analysis approach based on self-organizing map (SOM), an unsupervised learning technique of neural network, is applied to the design of such a quality control system. In this study we present a new material quality control system based on pattern analysis approach and illustrate the effectiveness of proposed system using actual electronic company material data.

  • PDF

Analysis of Input Factors of DNN Forecasting Model Using Layer-wise Relevance Propagation of Neural Network (신경망의 계층 연관성 전파를 이용한 DNN 예보모델의 입력인자 분석)

  • Yu, SukHyun
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1122-1137
    • /
    • 2021
  • PM2.5 concentration in Seoul could be predicted by deep neural network model. In this paper, the contribution of input factors to the model's prediction results is analyzed using the LRP(Layer-wise Relevance Propagation) technique. LRP analysis is performed by dividing the input data by time and PM concentration, respectively. As a result of the analysis by time, the contribution of the measurement factors is high in the forecast for the day, and those of the forecast factors are high in the forecast for the tomorrow and the day after tomorrow. In the case of the PM concentration analysis, the contribution of the weather factors is high in the low-concentration pattern, and that of the air quality factors is high in the high-concentration pattern. In addition, the date and the temperature factors contribute significantly regardless of time and concentration.

Classification of Natural and Artificial Forests from KOMPSAT-3/3A/5 Images Using Deep Neural Network (심층신경망을 이용한 KOMPSAT-3/3A/5 영상으로부터 자연림과 인공림의 분류)

  • Baek, Won-Kyung;Lee, Yong-Suk;Park, Sung-Hwan;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1965-1974
    • /
    • 2021
  • Satellite remote sensing approach can be actively used for forest monitoring. Especially, it is much meaningful to utilize Korea multi-purpose satellites, an independently operated satellite in Korea, for forest monitoring of Korea, Recently, several studies have been performed to exploit meaningful information from satellite remote sensed data via machine learning approaches. The forest information produced through machine learning approaches can be used to support the efficiency of traditional forest monitoring methods, such as in-situ survey or qualitative analysis of aerial image. The performance of machine learning approaches is greatly depending on the characteristics of study area and data. Thus, it is very important to survey the best model among the various machine learning models. In this study, the performance of deep neural network to classify artificial or natural forests was analyzed in Samcheok, Korea. As a result, the pixel accuracy was about 0.857. F1 scores for natural and artificial forests were about 0.917 and 0.433 respectively. The F1 score of artificial forest was low. However, we can find that the artificial and natural forest classification performance improvement of about 0.06 and 0.10 in F1 scores, compared to the results from single layered sigmoid artificial neural network. Based on these results, it is necessary to find a more appropriate model for the forest type classification by applying additional models based on a convolutional neural network.

Artificial Intelligence Based Medical Imaging: An Overview (AI 의료영상 분석의 개요 및 연구 현황에 대한 고찰)

  • Hong, Jun-Yong;Park, Sang Hyun;Jung, Young-Jin
    • Journal of radiological science and technology
    • /
    • v.43 no.3
    • /
    • pp.195-208
    • /
    • 2020
  • Artificial intelligence(AI) is a field of computer science that is defined as allowing computers to imitate human intellectual behavior, even though AI's performance is to imitate humans. It is grafted across software-based fields with the advantages of high accuracy and speed of processing that surpasses humans. Indeed, the AI based technology has become a key technology in the medical field that will lead the development of medical image analysis. Therefore, this article introduces and discusses the concept of deep learning-based medical imaging analysis using the principle of algorithms for convolutional neural network(CNN) and back propagation. The research cases application of the AI based medical imaging analysis is used to classify the various disease(such as chest disease, coronary artery disease, and cerebrovascular disease), and the performance estimation comparing between AI based medical imaging classifier and human experts.

Application of Artificial Neural Networks to the prediction of out-of-plane response of infill walls subjected to shake table

  • Onat, Onur;Gul, Muhammet
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.521-535
    • /
    • 2018
  • The main purpose of this paper is to predict missing absolute out-of-plane displacements and failure limits of infill walls by artificial neural network (ANN) models. For this purpose, two shake table experiments are performed. These experiments are conducted on a 1:1 scale one-bay one-story reinforced concrete frame (RCF) with an infill wall. One of the experimental models is composed of unreinforced brick model (URB) enclosures with an RCF and other is composed of an infill wall with bed joint reinforcement (BJR) enclosures with an RCF. An artificial earthquake load is applied with four acceleration levels to the URB model and with five acceleration levels to the BJR model. After a certain acceleration level, the accelerometers are detached from the wall to prevent damage to them. The removal of these instruments results in missing data. The missing absolute maximum out-of-plane displacements are predicted with ANN models. Failure of the infill wall in the out-of-plane direction is also predicted at the 0.79 g acceleration level. An accuracy of 99% is obtained for the available data. In addition, a benchmark analysis with multiple regression is performed. This study validates that the ANN-based procedure estimates missing experimental data more accurately than multiple regression models.

Applications of artificial intelligence and data mining techniques in soil modeling

  • Javadi, A.A.;Rezania, M.
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.53-74
    • /
    • 2009
  • In recent years, several computer-aided pattern recognition and data mining techniques have been developed for modeling of soil behavior. The main idea behind a pattern recognition system is that it learns adaptively from experience and is able to provide predictions for new cases. Artificial neural networks are the most widely used pattern recognition methods that have been utilized to model soil behavior. Recently, the authors have pioneered the application of genetic programming (GP) and evolutionary polynomial regression (EPR) techniques for modeling of soils and a number of other geotechnical applications. The paper reviews applications of pattern recognition and data mining systems in geotechnical engineering with particular reference to constitutive modeling of soils. It covers applications of artificial neural network, genetic programming and evolutionary programming approaches for soil modeling. It is suggested that these systems could be developed as efficient tools for modeling of soils and analysis of geotechnical engineering problems, especially for cases where the behavior is too complex and conventional models are unable to effectively describe various aspects of the behavior. It is also recognized that these techniques are complementary to conventional soil models rather than a substitute to them.

Derivation of predicted equation for scattered asbestos concentration generated while removing asbestos (석면 해체시 발생되는 비산 석면 농도 예측식 도출)

  • Kim, Doh-Hyoung;Jo, Min-Do;Choi, Young-Jun;Han, Seung-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.6-7
    • /
    • 2019
  • Asbestos has been widely used for construction materials due to its sound absorption and insulation properties. Despite the announcement that asbestos may cause cancer, asbestos demolition work has become more active. Asbestos was scattered by demolition work and the government started to regulate it. This study was started to predict the scattering asbestos concentration according to the research that it can cause cancer even if the concentration of asbestos meets legal standards. Therefore, in this paper, a regression analysis was conducted to derive a predictive equation after collecting and arranging the variables affecting scattering asbestos. As well as, artificial neural network analysis was used to make a more suitable prediction model.

  • PDF

Research Trends Analysis of Machine Learning and Deep Learning: Focused on the Topic Modeling (머신러닝 및 딥러닝 연구동향 분석: 토픽모델링을 중심으로)

  • Kim, Chang-Sik;Kim, Namgyu;Kwahk, Kee-Young
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.2
    • /
    • pp.19-28
    • /
    • 2019
  • The purpose of this study is to examine the trends on machine learning and deep learning research in the published journals from the Web of Science Database. To achieve the study purpose, we used the abstracts of 20,664 articles published between 1990 and 2017, which include the word 'machine learning', 'deep learning', and 'artificial neural network' in their titles. Twenty major research topics were identified from topic modeling analysis and they were inclusive of classification accuracy, machine learning, optimization problem, time series model, temperature flow, engine variable, neuron layer, spectrum sample, image feature, strength property, extreme machine learning, control system, energy power, cancer patient, descriptor compound, fault diagnosis, soil map, concentration removal, protein gene, and job problem. The analysis of the time-series linear regression showed that all identified topics in machine learning research were 'hot' ones.

Minimization of differential column shortening and sequential analysis of RC 3D-frames using ANN

  • Njomo, Wilfried W.;Ozay, Giray
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.989-1003
    • /
    • 2014
  • In the preliminary design stage of an RC 3D-frame, repeated sequential analyses to determine optimal members' sizes and the investigation of the parameters required to minimize the differential column shortening are computational effort consuming, especially when considering various types of loads such as dead load, temperature action, time dependent effects, construction and live loads. Because the desired accuracy at this stage does not justify such luxury, two backpropagation feedforward artificial neural networks have been proposed in order to approximate this information. Instead of using a commercial software package, many references providing advanced principles have been considered to code a program and generate these neural networks. The first one predicts the typical amount of time between two phases, needed to achieve the minimum maximorum differential column shortening. The other network aims to prognosticate sequential analysis results from those of the simultaneous analysis. After the training stages, testing procedures have been carried out in order to ensure the generalization ability of these respective systems. Numerical cases are studied in order to find out how good these ANN match with the sequential finite element analysis. Comparison reveals an acceptable fit, enabling these systems to be safely used in the preliminary design stage.