• Title/Summary/Keyword: Artificial muscles

Search Result 82, Processing Time 0.024 seconds

Dynamic Characteristics of an Antagonistic Actuation with Pneumatic Artificial Muscles (공압형 인공근육을 이용한 상극구동의 동적 특성)

  • Kang, Bong-Soo;Song, Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1081-1086
    • /
    • 2009
  • This paper presents dynamic characteristics of pneumatic artificial muscles. Since the actuating performance of a pneumatic muscle is closely related to the input pressure of a pneumatic muscle, the air flow model on a valve orifice and an elastic bladder of the muscle is formulated to estimate precisely the pressure variance of pneumatic muscles during deflating and inflating process. Frequency response experiments are performed with an antagonistic system consisting of two pneumatic muscles and fast pneumatic control valves. Comparing with experimental results, the proposed model yielded good performance in estimating dynamic motions of the antagonistic system as well as the pressure variance of the pneumatic artificial muscles

Artificial muscles: Non-Stoichiometry Nature, Sensing and Actuating Properties and Tactile Sensibility

  • Otero T.F.;Lopez-Cascales J.J.;Vazquez-Arenas G.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.118-122
    • /
    • 2005
  • Electro-chemo-mechanical devices or artificial muscles based on conducting polymers (CP) are presented as bilayers, CP/adhesive polymer, or as triple layers, CP/adhesive polymer/CP. Those soft and wet materials, working in aqueous solutions of a salt, mimic the composition of most organs from animals. Under electrochemical control, so working as new electrical machines, they produce continuous, reverse and elegant bending movements, mimicking those produce by animal muscles. By means of the current a perfect controls of the movement rate is attained giving soft and continuous movements. Muscles able to sense the chemical and mechanical conditions of work or muscle having tactile sense, as will be presented here, are being developed. All of them are founded on the non-stoichiometric nature of the soft and wet materials.

Multiple Simultaneous Specification Control of Antagonistic Actuation by Pneumatic Artificial Muscles (공압형 인공근육으로 구동되는 상극구동의 다중 동시 사양 제어)

  • Kang, Bong-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.34-41
    • /
    • 2011
  • This paper presents a frequency-response test performed on an antagonistic actuation system consisting of two Mckibben pneumatic artificial muscles and a pneumatic circuit. A linear model, capable of estimating the dynamic characteristics of the antagonistic system in the operating range of pneumatic artificial muscles, was optimally calculated based on frequency-response results and applied to a multiple simultaneous specification control scheme. Trajectory tracking results showed that the presented multiple simultaneous specification controller, built experimentally by three PD typed sample controllers, satisfied successfully all required control specifications; rising time, maximum overshoot, steady-state error.

Kinematics of an Intrinsic Continuum Robot with Pneumatic Artificial Muscles (공압인공근육을 가진 내부형 연속체로봇의 기구식)

  • Kang, Bong Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.289-296
    • /
    • 2016
  • This study presents the kinematics of an intrinsic continuum robot actuated by pneumatic artificial muscles. The single section of a developed continuum robot consisted of three muscles in parallel. The contraction of each muscle according to applied air pressure produced spatial motions of a distal plate with respect to a base plate. Based on the bending behaviors of artificial muscles, the orientation and position of the end-effector of a continuum robot were formulated using a transformation matrix. The orientation and position was also determined for a single section of the distal plate. A Jacobian matrix relating the contraction rate or the pressure rate of the muscles to the velocity vector of the end-effector was calculated considering the assembled position of actuators between neighboring sections of the robot. Experimental results showed that the motions of the intrinsic continuum robot were accurately estimated by the proposed kinematics.

A study on fuzzy control of manipulator with artificial rubber muscles (고무인공근 매니퓰레이터의 퍼지제어에 관한 연구)

  • ;Keio Watanabw;Nakamura, Masatoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1047-1051
    • /
    • 1993
  • A fuzzy controller of a manipulator with artificial rubber muscles is proposed. The fuzzy logic controller as a compensator is described to control the trajectory tracking of a -two link manipulator, where computed torque control method has already assumed to be applied. We shows that the fuzzy compensator with a simple adaptive scaling technique is effective for the robust control when there exist model uncertainties and/or untuned feedback gains. The effectiveness of the proposed control method is illustrated by some experimental results for a circular path tracking.

  • PDF

Teleoperation of Pneumatic Artificial Muscles Based on Joint Stiffness of Master Device (마스터장치의 회전강성을 고려한 공압인공근육의 원격조정)

  • Kim, Ryeong Hyeon;Kang, Bong Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1521-1527
    • /
    • 2013
  • This study proposes a wearable master device that can measure the joint stiffness and the angular displacement of a human operator to enhance the adapting capability of a slave system. A lightweight inertial sensor and the exoskeleton mechanism of the master device can make an operator feel comfortable, and artificial pneumatic muscles having a working principle similar to that of human muscles improve the performance of the slave device on emulating what a human operator does. Experimental results revealed that the proposed master/slave system based on the muscle stiffness sensor yielded uniform tracking performance compared with a conventional position-feedback controller when the payload applied to the slave system changed.

Effect of Viscosity on the Morphology of Electrospun Polyacrylonitrile Fibers as a Linear Actuator and Artificial Muscles

  • Kim, Ye-Na;Lee, Deuk-Yong;Lee, Myung-Hyun;Lee, Se-Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.203-206
    • /
    • 2006
  • Polyacrylonitrile (PAN) nanofibers, which are pH-sensitive and exhibit soft actuation as a linear actuator and artificial muscles, were prepared by electrospinning to investigate the effect of viscosity on the morphology of PAN fibers. Experimental results revealed that higher viscosity is critical for the formation of unbeaded nanofibers because surface tension is almost constant throughout the experiment. Uniform, smooth, and continuous fibers with diameters of about 700 nm were achieved for the 10 wt% PAN fibers at a flow rate of 0.5 mL/h and an electric field of 0.875 kV/cm.

Soft Actuator Development for Artificial Muscle (인공근육개발을 위한 소프트 액추에이터 연구)

  • Kang, Gyeongji;Song, Kahye
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.17-22
    • /
    • 2021
  • Soft robot research has been actively conducted due to the advantages of soft materials that have less motion restrictions and higher energy efficiency compared to rigid robots. In particular, soft robots are being applied in more and more diverse fields, and the need for soft robots is increasing, especially when dealing with soft or deformable objects that rigid robots cannot perform. Various soft robots are being developed, and studies on artificial muscles with versatility, seamless integration with sensing, and self-healing capabilities are being proposed. In this study, we propose one of the most simple rectangular shaped HASEL (Hydraulically amplified self-healing electrostatic) actuators and compare the performance according to shape deformation such as the size or ratio of actuators and electrodes. Developing these actuators can be used in many ways for artificial muscles in soft robotics.

A Skeletal Framework Artificial Hand Actuated by Micro Pneumatic Artificial Muscles

  • Lee, Young-Kwun;Oh, Yeon-Taek;Sung, Hak-Kyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.36.2-36
    • /
    • 2002
  • .Developing a skeletal framework artificial hand similar to real human hand. .Developing a micro artificial muscle actuated by pneumatic power. .Building a micro pneumatic system including micro atuators and its control devices. .Building a soft driving system for Service robots. .Designning and Fabricating a multi-channel micro pneumatic valve using MEMS technology.

  • PDF

Development of FACS-based Android Head for Emotional Expressions (감정표현을 위한 FACS 기반의 안드로이드 헤드의 개발)

  • Choi, Dongwoon;Lee, Duk-Yeon;Lee, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.25 no.4
    • /
    • pp.537-544
    • /
    • 2020
  • This paper proposes the creation of an android robot head based on the facial action coding system(FACS), and the generation of emotional expressions by FACS. The term android robot refers to robots with human-like appearance. These robots have artificial skin and muscles. To make the expression of emotions, the location and number of artificial muscles had to be determined. Therefore, it was necessary to anatomically analyze the motions of the human face by FACS. In FACS, expressions are composed of action units(AUs), which work as the basis of determining the location and number of artificial muscles in the robots. The android head developed in this study had servo motors and wires, which corresponded to 30 artificial muscles. Moreover, the android head was equipped with artificial skin in order to make the facial expressions. Spherical joints and springs were used to develop micro-eyeball structures, and the arrangement of the 30 servo motors was based on the efficient design of wire routing. The developed android head had 30-DOFs and could express 13 basic emotions. The recognition rate of these basic emotional expressions was evaluated at an exhibition by spectators.