• 제목/요약/키워드: Artificial intelligence techniques

검색결과 672건 처리시간 0.027초

해양환경 예측정보를 활용한 인공지능 분석 기반의 최적 안전항로 연구 (Research on optimal safety ship-route based on artificial intelligence analysis using marine environment prediction)

  • 엄대용;이방희
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2023년도 춘계학술대회
    • /
    • pp.100-103
    • /
    • 2023
  • 최근 스마트선박 개발에 발맞춰 정확하고 세밀한 실시간 해양환경 예측정보의 요구가 확대되고 선박에 직접 지원하기 위한 환경이 확보됨에 따라 최적항로 분야에서도 다양한 해양환경을 고려한 정보 생산 및 평가 연구가 필요하다. 스마트선박에서 해양환경의 위험도 및 에너지 소비의 불확실성을 줄이면서 최적항로를 산출할 수 있는 알고리즘은 2단계로 구분하여 개발하였다. 1단계는 해양환경정보들과 선박자동식별시스템(AIS)내에 선박의 위치·상태정보를 결합해 프로파일을 생성하였다. 2단계는 구성한 프로파일 결과를 이용하여 해양환경 에너지맵을 정의할 수 있는 모델을 개발하였고, 약 60만개의 데이터를 반영할 수 있도록 인공지능 머신러닝 기법 중 Random Forest를 적용하여 회귀식을 생성하였다. Random Forest 회귀 모델의 결정계수(R2)는 0.89 를 보였다. 생성한 모델에 2021년 6월 1일~3일의 해양환경 예측정보를 이용하여 Dijikstra 최단경로 알고리즘을 적용해 최적 안전항로를 산출하고 맵에 표출했다. Random Forest 회귀 모델로 산출된 항로는 유선적이고 해양환경 예측정보의 상태를 감안하며 항로를 도출하는 결과를 보였다. 본 연구의 실시간 해양환경 예측정보 기반의 항로 산출 개념은 선박의 이동 경향성을 반영한 현실적이면서 안전한 항로 산출이 가능하고, 향후 경제성, 안전성, 친환경성 평가 모델로 범위로 확대할 수 있을 것으로 기대된다.

  • PDF

Development of smart car intelligent wheel hub bearing embedded system using predictive diagnosis algorithm

  • Sam-Taek Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권10호
    • /
    • pp.1-8
    • /
    • 2023
  • 자동차의 주요 부품인 휠 베어링에 결함이 생기면 교통사고등 문제를 발생시켜 이를 해결하기 위해 빅데이터를 수집해서 예측진단 및 관리 기술을 통한 휠 베어링의 고장 유무 및 고장 유형을 조기에 알려 주는 알고리즘과 모니터링 시스템 개발이 필요하다. 본 논문에서는 이러한 지능형 휠 허브 베어링 정비 시스템 구현을 위해 신뢰성 및 건전성에 대한 모니터링용 센서 및 예측 진단하는 알고리즘이 탑재된 임베디드 시스템을 개발하였다. 사용된 알고리즘은 휠 베어링에 설치된 가속도 센서로부터 진동 신호를 취득하고 이를 신호 처리기법, 결함주파수 분석, 건전성 특징 인자정의 등의 과정을 빅데이터 기술을 통해 고장을 예측하고 진단할 수 있다. 구현된 알고리즘은 진동 주파수 성분들은 최소화하고 휠 베어링에서 발생하는 진동 성분을 극대화할 수 있는 안정 신호 추출 알고리즘을 적용하고, 필터를 활용한 노이즈 제거에서는 인공지능 기반의 건전성 추출 알고리즘을 적용하였으며, FFT를 통한 결함 주파수를 분석하여 고장 특성인자 추출을 통한 고장을 진단하였다. 본 시스템의 성능 목표는 12,800ODR 이상으로 시험 결과를 통해 목표치를 만족하였다.

변동성 돌파 전략을 사용한 S&P 500 지수의 자동 거래와 매수 및 보유 비교 연구 (Comparative Study of Automatic Trading and Buy-and-Hold in the S&P 500 Index Using a Volatility Breakout Strategy)

  • 홍성혁
    • 사물인터넷융복합논문지
    • /
    • 제9권6호
    • /
    • pp.57-62
    • /
    • 2023
  • 본 연구는 미국 S&P 500 지수를 변동성 돌파 전략을 활용하여 Buy and Hold 방식과 비교 분석한 연구이다. 변동성 돌파 전략은 시장의 상대적 안정 또는 집중된 시기 후의 가격 움직임을 활용하는 거래 전략이다. 특히, 낮은 변동성 기간 후에 큰 가격 움직임이 더 자주 발생한다는 것이 관찰된다. 주식이 한동안 좁은 가격 범위에서 움직이다가 가격이 갑작스레 상승 또는 하락하는 경우, 그 주식이 해당 방향으로 계속 움직일 것으로 예상된다. 이러한 움직임을 활용하기 위해 거래자들은 변동성 돌파 전략을 채택한다. 'k' 값은 최근 시장 변동성의 측정값에 곱하는 배수로서 활용된다. 변동성의 측정 방법 중 하나로는 최근 거래일의 최고가와 최저가 차이를 나타내는 평균 진정 범위(ATR)가 있다. 'k' 값은 거래자들이 거래 임계값을 설정하는 데 중요한 역할을 한다. 본 연구는 'k' 값을 일반적인 값으로 연산하여 Buy and Hold 전략과 수익률을 비교 하여, 변동성 돌파전략을 사용한 알고리즘 트레이딩이 약간은 높은 수익률을 이룩하였다. 추후에는 인공 지능 딥러닝 기법을 이용하여 S&P 500 지수의 자동 거래를 위한 최적의 K 값을 구하고, 이를 통해 수익률을 극대화하기 위한 시뮬레이션 결과를 제시할 예정이다.

생성-선정을 통한 텍스트 증강 프레임워크 (TAGS: Text Augmentation with Generation and Selection)

  • 김경민;김동환;조성웅;오흥선;황명하
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권10호
    • /
    • pp.455-460
    • /
    • 2023
  • 텍스트 증강은 자연어처리 모델의 성능 향상을 목적으로 원본 텍스트의 변환, 생성을 통하여 새로운 증강 텍스트를 생성하는 방법론이다. 기존 연구된 기법들은 표현적 다양성 부족, 의미 왜곡 , 한정적인 양의 증강 텍스트와 같은 한계점이 존재한다. 거대언어모델과 few-shot learning을 활용한 텍스트 증강은 이러한 한계점의 극복이 가능하지만, 잘못된 생성으로 인한 노이즈 발생의 위험성이 존재한다. 본 논문에서는 여러 후보 텍스트를 생성하고 적합한 텍스트를 증강 텍스트로 선정하는 TAGS를 제안한다. TAGS는 기존 텍스트 few shot learning을 통해 다양한 표현을 생성하면서 대조 학습과 유사도 비교를 통해 원본 텍스트가 적더라도 적합한 데이터를 효과적으로 선정한다. 이를 텍스트 증강이 필수적인 업무용 챗봇 데이터에 적용하여 60배 이상의 양적 향상을 달성하였다. 또한 증강 텍스트의 질적 향상을 확인하기 위해 실제 생성된 텍스트를 분석하여 원본 텍스트에 비해 의미론적, 표현적으로 다양한 텍스트를 생성함을 확인하였으며, 증강 텍스트로 실제 분류 모델을 학습하고 실험하여 실질적으로 자연어처리 모델 성능 향상에 도움이 되는 것을 확인하였다.

머신러닝 기반 KOSDAQ 시장의 관리종목 지정 예측 연구: 재무적 데이터를 중심으로 (Study on Predicting the Designation of Administrative Issue in the KOSDAQ Market Based on Machine Learning Based on Financial Data)

  • 윤양현;김태경;김수영
    • 벤처창업연구
    • /
    • 제17권1호
    • /
    • pp.229-249
    • /
    • 2022
  • 본 연구는 다양한 머신러닝 기법을 통해 코스닥(KOSDAQ) 시장 내 관리종목 지정을 예측할 수 있는 모델에 대해 연구하였다. 증권시장 내 기업이 관리종목으로 지정이 되면 시장에서는 이를 부정적인 정보로 인식하여 해당 기업과 투자자에게 손실을 가져오게 된다. 본 연구를 통해 기업의 재무적 데이터를 바탕으로 조기에 관리종목 지정을 예측하고, 투자자들의 포트폴리오 리스크 관리에 도움을 주기 위한 머신러닝 접근이 타당한지 살펴본다. 본 연구를 위해 활용한 독립변수는 수익성, 안정성, 활동성, 성장성을 나타내는 21개의 재무비율을 활용하였으며, K-IFRS가 적용된 2011년부터 2020년까지 관리종목과 비관리종목의 기업의 재무 데이터를 표본으로 추출하였다. 로지스틱 회귀분석, 의사결정나무, 서포트 벡터 머신, 랜덤 포레스트, LightGBM을 활용하여 관리종목 지정 예측 연구를 수행하였다. 연구결과는 분류 정확도가 82.73%인 LightGBM이 가장 우수한 예측 모형이었으며 분류 정확도가 가장 낮은 예측 모형은 정확도가 71.94%인 의사결정나무였다. 의사결정나무 기반 학습 모형의 변수 중요도의 상위 3개 변수를 확인한 결과 각 모형에서 공통적으로 나온 재무변수는 ROE(당기순이익), 자본금회전율(Capital stock turnover ratio)로 해당 재무변수가 관리종목 지정에 있어 상대적으로 중요한 변수임을 확인하였다. 대체적으로 앙상블을 이용한 학습 모형이 단일 학습 모형보다 예측 성능이 높은 것을 확인하였다. 기존 선행연구가 K-IFRS에 대한 고려를 하지 않았고, 다소 제한된 머신러닝에 의존하였다. 따라서 본 연구의 필요성과 함께 현실적 요구를 충족시키는 결과를 제시하였음을 알 수 있으며, 시장참여자들에게 있어 관리종목 지정에 대한 사전 예측을 확인할 수 있도록 기여했다고 볼 수 있다.

머신러닝 기반 부도예측모형에서 로컬영역의 도메인 지식 통합 규칙 기반 설명 방법 (Domain Knowledge Incorporated Local Rule-based Explanation for ML-based Bankruptcy Prediction Model)

  • 조수현;신경식
    • 경영정보학연구
    • /
    • 제24권1호
    • /
    • pp.105-123
    • /
    • 2022
  • 신용리스크 관리에 해당하는 부도예측모형은 기업에 대한 신용평가라고도 볼 수 있으며 은행을 비롯한 금융기관의 신용평가모형의 기본 지식기반으로 새로운 인공지능 기술을 접목할 수 있는 유망한 분야로 손꼽히고 있다. 고도화된 모형의 실제 응용은 사용자의 수용도가 중요하나 부도예측모형의 경우, 금융전문가 혹은 고객에게 모형의 결과에 대한 설명이 요구되는 분야로 설명력이 없는 모형은 실제로 도입되고 사용자들에게 수용되기에는 어려움이 있다. 결국 모형의 결과에 대한 설명은 모형의 사용자에게 제공되는 것으로 사용자가 납득할 수 있는 설명을 제공하는 것이 모형에 대한 신뢰와 수용을 증진시킬 수 있다. 본 연구에서는 머신러닝 기반 모형에 설명력을 제고하는 방안으로 설명대상 인스턴스에 대하여 로컬영역에서의 설명을 제공하고자 한다. 이를 위해 설명대상의 로컬영역에 유전알고리즘(GA)을 이용하여 가상의 데이터포인트들을 생성한 후, 로컬 대리모델(surrogate model)로 연관규칙 알고리즘을 이용하여 설명대상에 대한 규칙기반 설명(rule-based explanation)을 생성한다. 해석 가능한 로컬 모델의 활용으로 설명을 제공하는 기존의 방법에서 더 나아가 본 연구는 부도예측모형에 이용된 재무변수의 특성을 반영하여 연관규칙으로 도출된 설명에 도메인 지식을 통합한다. 이를 통해 사용자에게 제공되는 규칙의 현실적 가능성(feasibility)을 확보하고 제공되는 설명의 이해와 수용을 제고하고자 한다. 본 연구에서는 대표적인 블랙박스 모형인 인공신경망 기반 부도예측모형을 기반으로 최신의 규칙기반 설명 방법인 Anchor와 비교하였다. 제안하는 방법은 인공신경망 뿐만 아니라 다른 머신러닝 모형에도 적용 가능한 방법(model-agonistic method)이다.

변이형 오토인코더와 어텐션 메커니즘을 결합한 차트기반 주가 예측 (Chart-based Stock Price Prediction by Combing Variation Autoencoder and Attention Mechanisms)

  • 배상현;최병구
    • 경영정보학연구
    • /
    • 제23권1호
    • /
    • pp.23-43
    • /
    • 2021
  • 최근 인공지능 기법을 활용하여 캔들스틱 차트를 분석함으로써 주식가격 예측의 정확성을 높이고자 하는 다양한 연구가 진행되어 왔다. 그러나 이러한 연구들은 주식가격 예측을 위한 학습에 있어 캔들스틱 차트의 시계열적 특성을 고려하지 못한다는 점과 시장 참여자들의 감정 상태를 고려하지 못한다는 점 등이 문제로 지적되고 있다. 본 연구에서는 시장 참여자들의 감정상태를 반영하기 위해 변동성지수(VIX: volatility index) 차트를 캔들스틱 차트와 함께 고려하여 학습시키고 이를 변이형 오토인코더(VAE: variational auto encoder)와 어텐션 메커니즘(attention mechanisms)을 결합한 새로운 방법으로 분석하여 캔들스틱 차트의 시계열적 특성을 고려함으로써 기존 연구의 한계를 극복하고자 한다. 본 연구에서 제안한 방법의 성능 비교를 위해 S&P 500 기업 가운데 50개를 임의로 추출하여 제안한 방법을 통해 이들의 주식가격을 예측하고 이를 합성곱 신경망(CNN: convolutional neural network) 또는 장단기메모리(LSTM: long-short term memory) 등과 같은 기존 방법들과 비교하였다. 비교 결과 기존 방법들에 비해 본 연구에서 제안한 방법이 더 우수한 성능을 보이는 것으로 나타났다. 본 연구는 시장 참여자들의 감정 상태와 캔들스틱 차트의 시계열적 특성을 고려함으로써 주식 가격 예측의 정확성을 높였다는 점에서 그 의의가 있다.

스마트 팩토리 환경에서 안전한 통신을 위한 인증 메커니즘 설계 (A Design of Authentication Mechanism for Secure Communication in Smart Factory Environments)

  • 박중오
    • 산업융합연구
    • /
    • 제22권4호
    • /
    • pp.1-9
    • /
    • 2024
  • 스마트 팩토리는 최신 정보통신기술과 제조공정이 결합된 생산시설로, 급속한 발전과 글로벌 제조업의 변화를 반영하고 있다. 로보틱스 및 자동화, 사물인터넷의 통합, 인공지능 융합기술을 활용하여 다양한 제조환경의 생산 효율성을 극대하고 있다. 하지만 스마트 팩토리 환경에서 다양한 공격기법으로 인해 보안위협 및 취약점이 발생하고 있다. 스마트 팩토리 환경에서 보안위협이 발생하면 금전적인 손해, 기업이미지하락, 인명피해가 발생하여 이에 따른 보안대응이 필요하다. 따라서 본 논문에서는 스마트 팩토리 환경에서 안전한 통신을 수행하기 위한 보안 인증 메커니즘을 제안하였다. 제안한 인증 메커니즘에 대한 구성요소에서는 스마트 디바이스, 내부 운영관리 시스템, 인증 시스템, 클라우드 스토리지 서버가 있다. 스마트 기기 등록과정, 인증 절차. 이상징후 및 갱신절차를 세부적으로 설계히였다. 그리고 제안한 인증 메커니즘의 안전성을 분석하였고, 기존 인증 메커니즘과의 성능분석을 통해 대략 8%의 효율성을 확인하였다. 그리고 제안한 기술을 적용하기 위한 경량화 프로토콜 및 보안정잭에 대한 연구방향을 제시하여 보안성 향상에 도움을 주고자 한다.

GPT를 활용한 개인정보 처리방침 안전성 검증 기법 (Safety Verification Techniques of Privacy Policy Using GPT)

  • 심혜연;권민서;윤다영;서지영;이일구
    • 정보보호학회논문지
    • /
    • 제34권2호
    • /
    • pp.207-216
    • /
    • 2024
  • 4차 산업혁명으로 인해 빅데이터가 구축됨에 따라 개인 맞춤형 서비스가 급증했다. 이로 인해 온라인 서비스에서 수집하는 개인정보의 양이 늘어났으며, 사용자들의 개인정보 유출 및 프라이버시 침해 우려가 높아졌다. 온라인 서비스 제공자들은 이용자들의 프라이버시 침해 우려를 해소하기 위해 개인정보 처리방침을 제공하고 있으나, 개인정보 처리방침은 길이가 길고 복잡하여 이용자가 직접 위험 항목을 파악하기 어려운 문제로 인해 오남용되는 경우가 많다. 따라서 자동으로 개인정보 처리방침이 안전한지 여부를 검사할 수 있는 방법이 필요하다. 그러나 종래의 블랙리스트 및 기계학습 기반의 개인정보 처리방침 안전성 검증 기법은 확장이 어렵거나 접근성이 낮은 문제가 있다. 본 논문에서는 문제를 해결하기위해 생성형 인공지능인 GPT-3.5 API를 이용한 개인정보 처리방침 안전성 검증 기법을 제안한다. 새로운 환경에서도 분류 작업을 수행할 수 있고, 전문 지식이 없는 일반인이 쉽게 개인정보 처리방침을 검사할 수 있다는 가능성을 보인다. 실험에서는 블랙리스트 기반 개인정보 처리방침과 GPT 기반 개인정보 처리방침이 안전한 문장과 안전하지 않은 문장의 분류를 얼마나 정확하게 하는지와 분류에 소요된 시간을 측정했다. 실험 결과에 따르면, 제안하는 기법은 종래의 블랙리스트 기반 문장 안전성 검증 기법보다 평균적으로 10.34% 높은 정확도를 보였다.

딥러닝을 활용한 전시 정원 디자인 유사성 인지 모형 연구 (Development of Deep Recognition of Similarity in Show Garden Design Based on Deep Learning)

  • 조우윤;권진욱
    • 한국조경학회지
    • /
    • 제52권2호
    • /
    • pp.96-109
    • /
    • 2024
  • 본 연구는 딥러닝 모델 중 VGG-16 및 ResNet50 모델을 활용하여 전시 정원의 유사성 평가 방법을 제시하는 것에 목적이 있다. VGG-16과 ResNet50 모델을 기반으로 전시 정원 유사성 판단을 위한 모형을 개발하였고, 이를 DRG(deep recognition of similarity in show garden design)모형이라 한다. 평가를 위한 방법으로 GAP와 피어슨 상관계수를 활용한 알고리즘을 사용하여 모형을 구축하고 1순위(Top1), 3순위(Top3), 5순위(Top5)에서 원본 이미지와 유사한 이미지를 도출하는 총 개수 비교로 유사성의 정확도를 분석하였다. DRG 모형에 활용된 이미지 데이터는 국외 쇼몽가든페스티벌 전시 정원 총 278개 작품과 국내 정원박람회인 서울정원박람회 27개 작품 및 코리아가든쇼 전시정원 이미지 17개 작품이다. DRG모형을 활용하여 동일 집단과 타 집단간의 이미지 분석을 진행하였고, 이를 기반으로 전시 정원 유사성의 가이드라인을 제시하였다. 첫째, 전체 이미지 유사성 분석은 ResNet50 모델을 기반으로 하여 데이터 증강 기법을 적용하는 것이 유사성 도출에 적합하였다. 둘째, 내부 구조와 외곽형태에 중점을 둔 이미지 분석에서는 형태에 집중하기 위한 일정한 크기의 필터(16cm × 16cm)를 적용하여 이미지를 생성하고 VGG-16 모델을 적용하여 유사성을 비교하는 방법이 효과적임을 알 수 있었다. 이때, 이미지 크기는 448 × 448 픽셀이 효과적이며, 유채색의 원본 이미지를 기본으로 설정함을 제안하였다. 이러한 연구 결과를 토대로 전시 정원 유사성 판단에 대한 정량적 방법을 제안하고, 향후 다양한 분야와의 융합 연구를 통해 정원 문화의 지속적인 발전에 기여할 것으로 기대한다.