• Title/Summary/Keyword: Artificial intelligence in Design

Search Result 717, Processing Time 0.03 seconds

A Study on Architectural Image Generation using Artificial Intelligence Algorithm - A Fundamental Study on the Generation of Due Diligence Images Based on Architectural Sketch - (인공지능 알고리즘을 활용한 건축 이미지 생성에 관한 연구 - 건축 스케치 기반의 실사 이미지 생성을 위한 기초적 연구 -)

  • Han, Sang-Kook;Shin, Dong-Youn
    • Journal of KIBIM
    • /
    • v.11 no.2
    • /
    • pp.54-59
    • /
    • 2021
  • In the process of designing a building, the process of expressing the designer's ideas through images is essential. However, it is expensive and time consuming for a designer to analyze every individual case image to generate a hypothetical design. This study aims to visualize the basic design draft sketch made by the designer as a real image using the Generative Adversarial Network (GAN) based on the continuously accumulated architectural case images. Through this, we proposed a method to build an automated visualization environment using artificial intelligence and to visualize the architectural idea conceived by the designer in the architectural planning stage faster and cheaper than in the past. This study was conducted using approximately 20,000 images. In our study, the GAN algorithm allowed us to represent primary materials and shades within 2 seconds, but lacked accuracy in material and shading representation. We plan to add image data in the future to address this in a follow-up study.

Direction for Designing a 3D Animation Curriculum Utilizing AI Technology

  • Jibong Jeon
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.5
    • /
    • pp.141-158
    • /
    • 2023
  • In the field of animation, as technology advances, production technology, production methods, and production culture are also steadily developing. The demand for content is increasing rapidly around the OTT platform, and the demand for animation content and diversity is increasing. With these market changes, animation creation ability is becoming a more important animation education goal. There is also a need to innovate educational methods to provide students with the skills and knowledge required in the modern animation business. This paper investigated the composition of the educational curriculum of domestic and foreign animation universities education. It examines artificial intelligence (AI) technology that can be used in animation creation and explores the design and direction of the university animation curriculum using it. AI technology has already proven its potential in various areas, and it is integrated into the animation curriculum to present various development potentials. Using AI technology, students can focus on practical and essential animation education by preventing technical difficulties in animation creation, increase their experience in animation production, and experiment with planning and producing various contents. It is proposed to design an educational curriculum that further strengthens animation creation and production capabilities by forming smart animation classes to foster talents who can lead the future animation industry in a new direction.

Numerical solution of beam equation using neural networks and evolutionary optimization tools

  • Babaei, Mehdi;Atasoy, Arman;Hajirasouliha, Iman;Mollaei, Somayeh;Jalilkhani, Maysam
    • Advances in Computational Design
    • /
    • v.7 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • In this study, a new strategy is presented to transmit the fundamental elastic beam problem into the modern optimization platform and solve it by using artificial intelligence (AI) tools. As a practical example, deflection of Euler-Bernoulli beam is mathematically formulated by 2nd-order ordinary differential equations (ODEs) in accordance to the classical beam theory. This fundamental engineer problem is then transmitted from classic formulation to its artificial-intelligence presentation where the behavior of the beam is simulated by using neural networks (NNs). The supervised training strategy is employed in the developed NNs implemented in the heuristic optimization algorithms as the fitness function. Different evolutionary optimization tools such as genetic algorithm (GA) and particle swarm optimization (PSO) are used to solve this non-linear optimization problem. The step-by-step procedure of the proposed method is presented in the form of a practical flowchart. The results indicate that the proposed method of using AI toolsin solving beam ODEs can efficiently lead to accurate solutions with low computational costs, and should prove useful to solve more complex practical applications.

AI-BASED Monitoring Of New Plant Growth Management System Design

  • Seung-Ho Lee;Seung-Jung Shin
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.104-108
    • /
    • 2023
  • This paper deals with research on innovative systems using Python-based artificial intelligence technology in the field of plant growth monitoring. The importance of monitoring and analyzing the health status and growth environment of plants in real time contributes to improving the efficiency and quality of crop production. This paper proposes a method of processing and analyzing plant image data using computer vision and deep learning technologies. The system was implemented using Python language and the main deep learning framework, TensorFlow, PyTorch. A camera system that monitors plants in real time acquires image data and provides it as input to a deep neural network model. This model was used to determine the growth state of plants, the presence of pests, and nutritional status. The proposed system provides users with information on plant state changes in real time by providing monitoring results in the form of visual or notification. In addition, it is also used to predict future growth conditions or anomalies by building data analysis and prediction models based on the collected data. This paper is about the design and implementation of Python-based plant growth monitoring systems, data processing and analysis methods, and is expected to contribute to important research areas for improving plant production efficiency and reducing resource consumption.

Proposal of Artificial Intelligence Convergence Curriculum for Upskilling of Financial Manpower : Focusing on Private Bankers and Robo-Advisors

  • KIM, JiWon;WOO, HoSung
    • Fourth Industrial Review
    • /
    • v.2 no.1
    • /
    • pp.19-32
    • /
    • 2022
  • Purpose - As new technologies that have led the 4th industrial revolution spread after the COVID-19 pandemic, the business crisis of existing financial institutions and the threat of employee jobs are growing, especially in the financial sector. The purpose of this study is to propose a human-technology convergence curriculum for creating high value-added in financial institutions and upskilling financial manpower. Research design, data, and methodology - In this study, a curriculum was designed to strengthen job competency for Private Bankers, high-quality employees of a bank dealing with high-net-worth owners. The focus of the design is that learners acquire skills to use robo-advisors as a tool and supplement artificial intelligence ethics. Result - The curriculum is organized into a total of 16 classes, and the main contents are changes in the financial environment and financial consumers, the core technology of robo-advisors and AI ethics, and establishment and evaluation of hyper-personalized asset management strategies using robo-advisors. To achieve the educational goal, two evaluations are performed to derive individual tasks and team project results. Conclusion - Human-centered upskilling convergence education will contribute to improving employee value and expanding corporate high value-added business areas by utilizing new technologies as tools. It is expected that the development and application of convergence curriculum in various fields will continue to be advanced in the future.

Identification and risk management related to construction projects

  • Boughaba, Amina;Bouabaz, Mohamed
    • Advances in Computational Design
    • /
    • v.5 no.4
    • /
    • pp.445-465
    • /
    • 2020
  • This paper presents a study conducted with the aim of developing a model of tendering based on a technique of artificial intelligence by managing and controlling the factors of success or failure of construction projects through the evaluation of the process of invitation to tender. Aiming to solve this problem, analysis of the current environment based on SWOT (Strengths, Weaknesses, Opportunities, and Threats) is first carried out. Analysis was evaluated through a case study of the construction projects in Algeria, to bring about the internal and external factors which affect the process of invitation to tender related to the construction projects. This paper aims to develop a mean to identify threats-opportunities and strength-weaknesses related to the environment of various national construction projects, leading to the decision on whether to continue the project or not. Following a SWOT analysis, novel artificial intelligence models in forecasting the project status are proposed. The basic principal consists in interconnecting the different factors to model this phenomenon. An artificial neural network model is first proposed, followed by a model based on fuzzy logic. A third model resulting from the combination of the two previous ones is developed as a hybrid model. A simulation study is carried out to assess performance of the three models showing that the hybrid model is better suited in forecasting the construction project status than RNN (recurrent neural network) and FL (fuzzy logic) models.

Prediction of California bearing ratio (CBR) for coarse- and fine-grained soils using the GMDH-model

  • Mintae Kim;Seyma Ordu;Ozkan Arslan;Junyoung Ko
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.183-194
    • /
    • 2023
  • This study presents the prediction of the California bearing ratio (CBR) of coarse- and fine-grained soils using artificial intelligence technology. The group method of data handling (GMDH) algorithm, an artificial neural network-based model, was used in the prediction of the CBR values. In the design of the prediction models, various combinations of independent input variables for both coarse- and fine-grained soils have been used. The results obtained from the designed GMDH-type neural networks (GMDH-type NN) were compared with other regression models, such as linear, support vector, and multilayer perception regression methods. The performance of models was evaluated with a regression coefficient (R2), root-mean-square error (RMSE), and mean absolute error (MAE). The results showed that GMDH-type NN algorithm had higher performance than other regression methods in the prediction of CBR value for coarse- and fine-grained soils. The GMDH model had an R2 of 0.938, RMSE of 1.87, and MAE of 1.48 for the input variables {G, S, and MDD} in coarse-grained soils. For fine-grained soils, it had an R2 of 0.829, RMSE of 3.02, and MAE of 2.40, when using the input variables {LL, PI, MDD, and OMC}. The performance evaluations revealed that the GMDH-type NN models were effective in predicting CBR values of both coarse- and fine-grained soils.

A Lightweight Deep Learning Model for Text Detection in Fashion Design Sketch Images for Digital Transformation

  • Ju-Seok Shin;Hyun-Woo Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.17-25
    • /
    • 2023
  • In this paper, we propose a lightweight deep learning architecture tailored for efficient text detection in fashion design sketch images. Given the increasing prominence of Digital Transformation in the fashion industry, there is a growing emphasis on harnessing digital tools for creating fashion design sketches. As digitization becomes more pervasive in the fashion design process, the initial stages of text detection and recognition take on pivotal roles. In this study, a lightweight network was designed by building upon existing text detection deep learning models, taking into consideration the unique characteristics of apparel design drawings. Additionally, a separately collected dataset of apparel design drawings was added to train the deep learning model. Experimental results underscore the superior performance of our proposed deep learning model, outperforming existing text detection models by approximately 20% when applied to fashion design sketch images. As a result, this paper is expected to contribute to the Digital Transformation in the field of clothing design by means of research on optimizing deep learning models and detecting specialized text information.

Ambient Intelligence in Distributed Modular Systems

  • Ngo Trung Dung;Lund Henrik Hautop
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.421-426
    • /
    • 2004
  • Analyzing adaptive possibilities of agents in multi-agents system, we have discovered new aspects of ambient intelligence in distributed modular systems using intelligent building blocks (I-BLOCKS) [1]. This paper describes early scientific researches related to technical design, applicable experiments and evaluation of adaptive processing and information interaction among I-BLOCKS allowing users to easily develop ambient intelligence applications. The processing technology presented in this paper is embedded inside each DUPLO1 brick by microprocessor as well as selected sensors and actuators in addition. Behaviors of an I-BLOCKS modular structure are defined by the internal processing functionality of each I-Blocks in such structure and communication capacities between I-BLOCKS. Users of the I-BLOCKS system can do 'programming by building' and thereby create specific functionalities of a modular structure of intelligent artefacts without the need to learn and use traditional programming language. From investigating different effects of modem artificial intelligence, I-BLOCKS we have developed might possibly contain potential possibilities for developing applications in ambient intelligence (AmI) environments. To illustrate these possibilities, the paper presents a range of different experimental scenarios in which I-BLOCKS have been used to set-up reconfigurable modular systems. The paper also reports briefly about earlier experiments of I-BLOCKS in different research fields, allowing users to construct AmI applications by a just defined concept of modular artefacts [3].

  • PDF

A Study on the Development of Digital Yut Playing System Based on Physical Computing (피지컬 컴퓨팅을 기반으로 한 디지털 윷놀이 시스템 개발에 관한 연구)

  • Koh, Byoungoh
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.3
    • /
    • pp.335-342
    • /
    • 2017
  • The artificial intelligence, robot technology, Internet of things, and life sciences that create added value while dramatically transforming human life have been highlighted in the fourth industrial revolution, the next industrial revolution. In order to adapt to the 4th industry, it is necessary to educate students to develop fusion thinking and computing thinking ability. Therefore, in this study, we developed a digital Yut Playing system based on physical computing, reflecting STEAM and decomposition, pattern recognition, abstraction, and algorithm design, which are components of computing thinking. By experiencing the developed system and applying it to education, it raised interest and interest in programming education and improved programming lesson for fusion thinking and computing thinking ability.