• Title/Summary/Keyword: Artificial intelligence capabilities

Search Result 120, Processing Time 0.03 seconds

A Study on the Experiential Learning-Based Education for the Development of Artificial Intelligence Competency (인공지능 역량 함양을 위한 경험학습 기반 교육에 관한 고찰)

  • Park Sangwoo;Cho Jungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.1
    • /
    • pp.153-172
    • /
    • 2023
  • We look into the theory of experiential learning, which allows learners to design and organize their own lives, as well as to develop the necessary competencies for students who will be living in intelligent information society. We also investigate the teaching and learning methods, as well as the educational contents of artificial intelligence education, and develop an approach to artificial intelligence education that will develop learners' capabilities. As a result, we have investigated the pedagogical needs for artificial intelligence education in elementary and secondary schools, critically reviewed the discussions on experiential learning-based education for artificial intelligence education in elementary and secondary schools, and proposed a plan. Experiential learning achieves comprehension and knowledge acquisition naturally, as well as subject connection and integration. When preparing for artificial intelligence education, practical methods and procedures for developing capabilities in artificial intelligence education, focusing on in-depth learning, inter-subject linkage and integration, life-related learning, and reflection on the learning process, should be considered unavoidable.

Calculating Data and Artificial Neural Network Capability (데이터와 인공신경망 능력 계산)

  • Yi, Dokkyun;Park, Jieun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2022
  • Recently, various uses of artificial intelligence have been made possible through the deep artificial neural network structure of machine learning, demonstrating human-like capabilities. Unfortunately, the deep structure of the artificial neural network has not yet been accurately interpreted. This part is acting as anxiety and rejection of artificial intelligence. Among these problems, we solve the capability part of artificial neural networks. Calculate the size of the artificial neural network structure and calculate the size of data that the artificial neural network can process. The calculation method uses the group method used in mathematics to calculate the size of data and artificial neural networks using an order that can know the structure and size of the group. Through this, it is possible to know the capabilities of artificial neural networks, and to relieve anxiety about artificial intelligence. The size of the data and the deep artificial neural network are calculated and verified through numerical experiments.

Using artificial intelligence to solve a smart structure problem

  • Kaiwen, Liu;Jun, Gao;Ruizhe, Qiu
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.393-406
    • /
    • 2023
  • Smart structures are those structure that could adopt some behavior to prevent instability in their responses. The recognition of stability deterioration has been performed through rigid mathematical formulations in control theory and unpredicted results could not be addressed in control systems since they are able to only work under their predefined condition. On the other hand, incorporating all affecting parameters could result in high computational cost and delay time in the response of the systems. Artificial intelligence (AI) method has shown to be a promising methodology not only in the computer science by at everyday life and in engineering problems. In the present study, we exploit the capabilities of artificial intelligence method to obtain frequency response of a smart structure. In this regard, a comprehensive development of equations is presented using Hamilton' principle and first order shear deformation theory. The equations were solved by numerical methods and the results are used to train an artificial neural network (ANN). It is demonstrated that ANN modeling could provide accurate results in comparison to the numerical solutions and it take less time than numerical solution.

Data Mining and Artificial Intelligence Approach for Intelligent Transportation System (ITS를 위한 데이터 마이닝과 인공지능 기법 연구)

  • Sam, Kaung Myat;Rhee, Kyung-Hyune
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.894-897
    • /
    • 2014
  • The speed of processes and the extremely large amount of data to be used in Intelligence Transportations System (ITS) cannot be handling by humans without considerable automation. However, it is difficult to develop software with conventional fixed algorithms (hard-wired logic on decision making level) for effectively manipulate dynamically evolving real time transportation environment. This situation can be resolved by applying methods of artificial intelligence and data mining that provide flexibility and learning capability. This paper presents a brief introduction of data mining and artificial intelligence (AI) applications in Intelligence Transportation System (ITS), analyzing the prospects of enhancing the capabilities by means of knowledge discovery and accumulating intelligence to support in decision making.

A Study on Development of School Mathematics Contents for Artificial Intelligence (AI) Capability (인공지능(AI) 역량 함양을 위한 고등학교 수학 내용 구성에 관한 소고)

  • Ko, Ho Kyoung
    • Journal of the Korean School Mathematics Society
    • /
    • v.23 no.2
    • /
    • pp.223-237
    • /
    • 2020
  • Artificial intelligence technology, which represents the era of the 4th Industrial Revolution, is now deeply involved in our lives, and future education places great emphasis on building students' capabilities for the principles and uses of artificial intelligence. Therefore, the purpose of this study is to develop the contents of AI related education in mathematics, which the relationship is closely connected to each other. To this end, I propose establishing two novel AI-related contents in mathematics education. One subject is related to learning the principle of machine learning based on mathematics foundation. In addition, I draw the core math contents dealt in following subject called 'Basic Mathematics for AI and Data Science.'

Study on Machine Learning Techniques for Malware Classification and Detection

  • Moon, Jaewoong;Kim, Subin;Song, Jaeseung;Kim, Kyungshin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4308-4325
    • /
    • 2021
  • The importance and necessity of artificial intelligence, particularly machine learning, has recently been emphasized. In fact, artificial intelligence, such as intelligent surveillance cameras and other security systems, is used to solve various problems or provide convenience, providing solutions to problems that humans traditionally had to manually deal with one at a time. Among them, information security is one of the domains where the use of artificial intelligence is especially needed because the frequency of occurrence and processing capacity of dangerous codes exceeds the capabilities of humans. Therefore, this study intends to examine the definition of artificial intelligence and machine learning, its execution method, process, learning algorithm, and cases of utilization in various domains, particularly the cases and contents of artificial intelligence technology used in the field of information security. Based on this, this study proposes a method to apply machine learning technology to the method of classifying and detecting malware that has rapidly increased in recent years. The proposed methodology converts software programs containing malicious codes into images and creates training data suitable for machine learning by preparing data and augmenting the dataset. The model trained using the images created in this manner is expected to be effective in classifying and detecting malware.

A Multimedia Information System Integrating Hypermedia, Information Retrieval, and DBMS Technologies

  • Loh, Woong-Kee;Park, Byung-Kwon;Lee, Sang-Ho;Whang, Kyu-Young
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06b
    • /
    • pp.128-133
    • /
    • 1996
  • In this paper, we describe the design and implementation of a multimedia information system integrating hypermdia, information retrieval, and DBMS technologies. We browse the information space through hypermedia link navigation and also use ad hoc queries for direct retrieval of information from the database. Both the hypermedia and the information retrieval systems are integrated into a database management system (DMBS) so that concurrent edition, update, and retrieval of documents can have the ACID properties of atomicity, consistency, isolation, and durability. We will first explain the architecture of the system and then, describe how the hypermedia system is integrated with information retrieval capability, and finally integrated with DBMS capabilities.

  • PDF

Design of High School Software AI Education Model in IoT Environment (사물인터넷 환경에서의 고등학교 SW·AI 교육 모델 설계)

  • Keun-Ho Lee;JungSoo Han
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.49-55
    • /
    • 2023
  • The evolution of new digital technologies is progressing rapidly. In particular, many changes in software and artificial intelligence are progressing rapidly in the field of education. The Ministry of Education is planning an educational program by linking software and artificial intelligence regular curriculum. Before applying it to regular subjects, various software and artificial intelligence related experience camps are being promoted. This study aims to construct an educational model for software and artificial intelligence education programs for high school students based on new digital technology. By expanding and distributing software and artificial intelligence education, we aim to enhance the basic capabilities of software and artificial intelligence for high school students. I would like to define the concept of software and artificial intelligence in high school and propose a model that links software and artificial intelligence learning factors to the regular curriculum.

The Effect of AI Experience Program Using Teachable Machine on AI Perception of Elementary School Students (Teachable machine을 활용한 인공지능 체험 프로그램이 초등학생의 인공지능 인식에 미치는 영향)

  • Lee, Seung-mee;Chun, Seok-Ju
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.4
    • /
    • pp.611-619
    • /
    • 2021
  • Artificial intelligence is at the heart of the Fourth Industrial Revolution. Education must change in order to develop the capabilities necessary for future AI-based societies. This study developed and applied artificial intelligence experience classes using Teachable machine to elementary school students, and analyzed changes in artificial intelligence understanding and interest among students. Among the 10 artificial intelligence classes, 4 classes used various artificial intelligence education platforms, and 6 classes focused on Teachable machines. Before and after the application of the program, students' interest and understanding in artificial intelligence were examined. Quantitative and qualitative studies were conducted together. Studies have shown that both students' interest and understanding of artificial intelligence has improved since the application of the program. Furthermore, based on the findings, we propose a follow-up study for the development of artificial intelligence training programs.

GreedyUCB1 based Monte-Carlo Tree Search for General Video Game Playing Artificial Intelligence (일반 비디오 게임 플레이 인공지능을 위한 GreedyUCB1기반 몬테카를로 트리 탐색)

  • Park, Hyunsoo;Kim, HyunTae;Kim, KyungJoong
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.8
    • /
    • pp.572-577
    • /
    • 2015
  • Generally, the existing Artificial Intelligence (AI) systems were designed for specific purposes and their capabilities handle only specific problems. Alternatively, Artificial General Intelligence can solve new problems as well as those that are already known. Recently, General Video Game Playing the game AI version of General Artificial Intelligence, has garnered a large amount of interest among Game Artificial Intelligence communities. Although video games are the sole concern, the design of a single AI that is capable of playing various video games is not an easy process. In this paper, we propose a GreedyUCB1 algorithm and rollout method that were formulated using the knowledge from a game analysis for the Monte-Carlo Tree Search game AI. An AI that used our method was ranked fourth at the GVG-AI (General Video Game-Artificial Intelligence) competition of the IEEE international conference of CIG (Computational Intelligence in Games) 2014.