• Title/Summary/Keyword: Artificial dielectric

Search Result 61, Processing Time 0.027 seconds

A Study on the Evaluation of Concrete Unit-Water Content of FDR Sensor Using Deep Learning and Machine Learning (딥러닝과 머신러닝을 이용한 FDR 센서의 콘크리트 단위수량 평가에 관한 연구)

  • Lee, Seung-Yeop;Youn, Ji-Won;Wi, Gwang-Woo;Yang, Hyun-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.29-30
    • /
    • 2022
  • The unit-water content has a very significant effect on the durability of the construction structure and the quality of concrete. Although there are various methods for measuring the unit-water content, there are problems of time required for measurement, precision, and reproducibility. Recently, there is an FDR sensor capable of measuring moisture content in real time through an apparent dielectric constant change of electromagnetic waves. In addition, various artificial intelligence techniques that can non-linearly supplement the accuracy of FDR sensors are being studied. In this study, the accuracy of unit-water content measurement was compared and evaluated using machine learning and deep learning techniques after normalizing the data secured in concrete using frequency domain reflectometry (FDR) sensors used to measure soil moisture at home and abroad. The result of comparing the accuracy of machine learning and deep learning is judged to be excellent in the accuracy of deep learning, which can well express the nonlinear relationship between FDR sensor data and concrete unit-water content.

  • PDF

Embodiment of High Impedance Surface of Meta-Material Characteristic Using Symmetrical AMC Structure and Its SAR Analysis (대칭형 인공자기도체 구조를 이용한 메타물질 특성의 고임피던스 표면 구현 및 SAR 특성 분석)

  • Lee, Seungwoo;Lee, Moung-Hee;Rhee, Seung-Yeop;Kim, Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.9
    • /
    • pp.744-750
    • /
    • 2013
  • In this paper, we proposed new type of an artificial magnetic conductor(AMC) structure, which has a high impedance surface for realizing the meta-material characteristics. The designed AMC structure set a goal of 3.2GHz, and the reflector, which consists of periodically arrayed AMCs is fabricated and measured. The high impedance improves the reflection coefficient, decreases the system size and interference, and increases the antenna performance. The structure has embodied the high impedance by the thickness and relative permitivity of the dielectric substrate and the design configuration without the metallic via hole which connects the AMC to the GND. The bandwidth is 150% broader than the similar AMC structures. Also, the distance between the antenna and the AMC reflector is decreased by ${\lambda}/10$ as working as the metal(PEC) reflectors. The antenna radiation characteristics are 3dB increased at 10mm away from reflector by measurement. The proposed reflector could be inserted in the portable mobile devices, and the antenna's performance has improved by the reflector. The specific absorption rate is dramatically decreased over 94% because the back radiation of the antenna is shielded.

Design and SAR Analysis of Wearable Antenna on Various Parts of Human Body, Using Conventional and Artificial Ground Planes

  • Ali, Usman;Ullah, Sadiq;Khan, Jalal;Shafi, Muhammad;Kamal, Babar;Basir, Abdul;Flint, James A;Seager, Rob D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.317-328
    • /
    • 2017
  • This paper presents design and specific absorption rate analysis of a 2.4 GHz wearable patch antenna on a conventional and electromagnetic bandgap (EBG) ground planes, under normal and bent conditions. Wearable materials are used in the design of the antenna and EBG surfaces. A woven fabric (Zelt) is used as a conductive material and a 3 mm thicker Wash Cotton is used as a substrate. The dielectric constant and tangent loss of the substrate are 1.51 and 0.02 respectively. The volume of the proposed antenna is $113{\times}96.4{\times}3mm^3$. The metamaterial surface is used as a high impedance surface which shields the body from the hazards of electromagnetic radiations to reduce the Specific Absorption Rate (SAR). For on-body analysis a three layer model (containing skin, fats and muscles) of human arm is used. Antenna employing the EBG ground plane gives safe value of SAR (i.e. 1.77W/kg<2W/kg), when worn on human arm. This value is obtained using the safe limit of 2 W/kg, averaged over 10g of tissue, specified by the International Commission of Non Ionization Radiation Protection (ICNIRP). The SAR is reduced by 83.82 % as compare to the conventional antenna (8.16 W/kg>2W/kg). The efficiency of the EBG based antenna is improved from 52 to 74 %, relative to the conventional counterpart. The proposed antenna can be used in wearable electronics and smart clothing.

Thickness dependent dielectric properties of $BaTiO_3$/Sr$TiO_3$ Nano-structured artificial lattices (나노 구조로 된 $BaTiO_3$/Sr$TiO_3$ 산화물 인공격자의 두께 의존적인 유전특성)

  • 김주호;김이준;정동근;김인우;제정호;이재찬
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.56-56
    • /
    • 2003
  • BaTiO$_3$, SrTiO$_3$단일막과 BaTiO$_3$ (BTO)/SrTiO$_3$ (STO) 산화물 인공격자를 pulsed laser deposition (PLD) 법에 의해서 100 nm 두께의 (La,Sr)CoO3 (LSCO) 산화물 전극이 코핑된 MgO 단결정 기판 위에 증착시켰다. 이러한 기판위에서 2 unit cell의 적층 두께를 갖는 BTO/STO 초격자 (=BTO2/STO2)를 100~5 nm까지 변화시켰다. 또한 BTO와 STO 단일막도 같은 두께로 변화시켰다. 이러한 두께 범위에서 BTO, STO 단일막과 초격자의 격자변형에 따른 유전특성을 살펴 보았다. 두께 변화에 따른 단일막과 초격자의 구조 분석은 포항 방사광 가속기의 x-ray 회절에 의해서 이루어졌다. 다양한 두께를 갖는 BTO2/STO2 초격자에서 BTO와 STO 충은 in-plane 방향으로 격자정합을 유지하면서 변형되었다. 두께가 얇아지면서 하부 LSCO영향으로 BTO, STO의 n-plane 격자상수는 LSCO 격자상수 쪽으로 접근하였다. Out-of-plane 방향의 BTO 격자상수는 두께가 얇아지면서 증가하였고 반면에 STO 격자상수는 감소하였다. STO와 BTO 단일막의 격자변형은 두께가 얇아지면서 in-plane 방향으로 압축응력으로 인해 증가하였다. 그러나, 격자부정합도가 큰 BTO격자에서 더 많이 변형되었다. 또한 초격자에서 BTO격자가 BTO 단일막보다 더 많이 변형되었는데 초격자에서는 BTO, STO 두 층의 발달된 변형뿐만 아니라 하부 LSCO/MgO 기판의 영향을 함께 받고 있기 때문이다. 초격자와 단일막의 유전상수를 살펴보면은 두께가 감소하면서 유전상수가 감소하는 size effect을 보이고 있다. 하지만 초격자에서의 유전상수가 단일막보다 우수한 유전특성을 보이고 있다. 이러한 결과로 볼 때 격자변형이 size effect 영향을 끼치는 중요한 요소임을 확인하였다.

  • PDF

Interactions of Low-Temperature Atmospheric-Pressure Plasmas with Cells, Tissues, and Biomaterials for Orthopaedic Applications

  • Hamaguchi, Satoshi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.20-20
    • /
    • 2011
  • It has been known that, under certain conditions, application of low-temperature atmospheric-pressure plasmas can enhance proliferation of cells. In this study, conditions for optimal cell proliferation were examined for various cells relevant for orthopaedic applications. Plasmas used in our experiments were generated by dielectric barrier discharge (DBD) with a helium flow (of approximately 3 litter/min) into ambient air at atmospheric pressure by a 10 kV~20 kHz power supply. Such plasmas were directly applied to a medium, in which cells of interest were cultured. The cells examined in this study were human synoviocytes, rat mesenchymal stem cells derived from bone marrow or adipose tissue, a mouse osteoblastic cell line (MC3T3-E1), a mouse embryonic mesenchymal cell line (C3H-10T1/2), human osteosarcoma cells (HOS), a mouse myoblast cell line (C2C12), and rat Schwann cells. Since cell proliferation can be enhanced even if the cells are not directly exposed to plasmas but cultured in a medium that is pre-treated by plasma application, it is surmised that long-life free radicals generated in the medium by plasma application stimulate cell proliferation if their densities are appropriate. The level of free radical generation in the medium was examined by dROMs tests and correlation between cell proliferation and oxidative stress was observed. Other applications of plasma medicine in orthopaedics, such as plasma modification of artificial bones and wound healing effects by direct plasma application for mouse models, will be also discussed. The work has been done in collaboration with Prof. H. Yoshikawa and his group members at the School of Medicine, Osaka University.

  • PDF

Feasibility Study for the Development of a Device for Pathological Tissue (병리학적 조직 진단장치 개발에 대한 타당성 분석 연구)

  • Ko Chea-Ok;Park Min-Young;Kim Jeong-Lan;Lee Ae-Kyoung;Choi Hyung-Do;Choi Jae-Ic;Pack Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.4 s.107
    • /
    • pp.341-350
    • /
    • 2006
  • In this paper, a new method for detecting breast cancer is proposed, which utilizes dielectric characteristics of pathological tissues and time delay of back scattered response, and its feasibility was investigated. We have developed a detection algorithm and verified it by numerical simulation and measurement for a prototype system. For a prototype system, we have fabricated experimental model(artificial breast with a cancer) and UWB(ultra-wideband) antenna. The results of the measurement simulation show an excellent detection capability of a cancer tissue. It is found that a good UWB antenna and a good calibration signal are key elements of such detection system. Further study is ongoing to develop a commercial system.

High-Sensitivity Microstrip Patch Sensor Antenna for Detecting Concentration of Ethanol-Water Solution in Microliter Volume (마이크로리터 부피의 에탄올 수용액 농도 검출을 위한 고감도 마이크로스트립 패치 센서 안테나)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.510-515
    • /
    • 2022
  • In this paper, a microstrip patch sensor antenna (MPSA) for detecting the concentration of an ethanol-water solution in a microliter volume is proposed. A rectangular slot was added at the radiating edge of the patch to increase the sensitivity to the relative permittivity change. To improve a low input resistance caused by placing an ethanol-water solution, which is a polar liquid with high dielectric constant and high loss tangent, on the patch, a quarter-wave impedance transformer was added between the 50-ohm feedline and the patch, and the MPSA was fabricated on a 0.76 mm-thick RF-35 substrate. A cylindrical container was made of acryl, and 15 microliters of the ethanol-water solution was tested from 0% to 100% of ethanol concentration at 20% intervals. Experiment results show that the resonant frequency increased from 1.947 GHz to 2.509 GHz when the ethanol concentration of the ethanol-water solution was increased from 0% to 100%, demonstrating the performance as a concentration detecting sensor.

Impedance Spectroscopy Analysis on the LaAlO3/SrxCa1-xTiO3/SrTiO3 Hetero-Oxide Interface System

  • Park, Da-Hee;Kwon, Kyoung-Woo;Park, Chan-Rok;Choi, Yoo-Jin;Bae, Seung-Muk;Baek, Senug-Hyub;Kim, Jin-Sang;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.188.2-188.2
    • /
    • 2015
  • The presence of the conduction interface in epitaxial $LaAlO_3/SrTiO_3$ thin films has opened up challenging applications which can be expanded to next-generation nano-electronics. The metallic conduction path is associated with two adjacent insulating materials. Such device structure is applicable to frequency-dependent impedance spectroscopy. Impedance spectroscopy allows for simultaneous measurement of resistivity and dielectric constants, systematic identification of the underlying electrical origins, and the estimation of the electrical homogeneity in the corresponding electrical origins. Such unique capability is combined with the intentional control on the interface composition composed of $SrTiO_3$ and $CaTiO_3$, which can be denoted by $SrxCa1-_xTiO_3$. The underlying $Sr_xCa1-_xTiO_3$ interface was deposited using pulsed-laser deposition, followed by the epitaxial $LaAlO_3$ thin films. The platinum electrodes were constructed using metal shadow masks, in order to accommodate 2-point electrode configuration. Impedance spectroscopy was performed as the function of the relative ratio of Sr to Ca. The respective impedance spectra were analyzed in terms of the equivalent circuit models. Furthermore, the impedance spectra were monitored as a function of temperature. The ac-based characterization in the 2-dimensional conduction path supplements the dc-based electrical analysis. The artificial manipulation of the interface composition will be discussed towards the electrical application of 2-dimensional materials to the semiconductor devices in replacement for the current Si-based devices.

  • PDF

Characterization of Physical Factor of Unsaturated Ground Deformation induced by Rainfall (강우를 고려한 불포화 지반변형의 영향인자 평가)

  • Kim, Man-Il;Jeon, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.127-136
    • /
    • 2008
  • Geophysical survey for establishing a wide site for the distribution of water content, wetting front infiltration due to the rainfall, and distribution of groundwater level has been performed by using 8round penetration radar (GPR) method, electrical resistivity method, and so on. On the other hand, a narrow area survey was performed to use a permittivity method such as time domain reflectometry, frequency domain reflectometry, and amplitude domain reflectometry methods for estimating volumetric water content, soil density, and concentration of contaminant in surface and subsurface. The permittivity methods establish more corrective physical parameters than different found survey technologies mentioned above. In this study for establishment of infiltration behaviors for wetting front in the unsaturated soil caused by an artificial rainfall, soil physical parameters for volumetric water content, pore water pressure, and pore air pressure were measured by FDR measurement device and pore water pressure meter which are installed in the unsaturated weathered granite soil with different depths. Consequently, the authors were proposed to a new establishment method for analyzing the variations of volumetric water content and wetting front infiltration from the responses of infiltrating pore water in the unsaturated soil.

Design and Implementation of Memory-Centric Computing System for Big Data Analysis

  • Jung, Byung-Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.1-7
    • /
    • 2022
  • Recently, as the use of applications such as big data programs and machine learning programs that are driven while generating large amounts of data in the program itself becomes common, the existing main memory alone lacks memory, making it difficult to execute the program quickly. In particular, the need to derive results more quickly has emerged in a situation where it is necessary to analyze whether the entire sequence is genetically altered due to the outbreak of the coronavirus. As a result of measuring performance by applying large-capacity data to a computing system equipped with a self-developed memory pool MOCA host adapter instead of processing large-capacity data from an existing SSD, performance improved by 16% compared to the existing SSD system. In addition, in various other benchmark tests, IO performance was 92.8%, 80.6%, and 32.8% faster than SSD in computing systems equipped with memory pool MOCA host adapters such as SortSampleBam, ApplyBQSR, and GatherBamFiles by task of workflow. When analyzing large amounts of data, such as electrical dielectric pipeline analysis, it is judged that the measurement delay occurring at runtime can be reduced in the computing system equipped with the memory pool MOCA host adapter developed in this research.