• 제목/요약/키워드: Artificial accelerograms

검색결과 25건 처리시간 0.025초

Multiple linear regression and fuzzy linear regression based assessment of postseismic structural damage indices

  • Fani I. Gkountakou;Anaxagoras Elenas;Basil K. Papadopoulos
    • Earthquakes and Structures
    • /
    • 제24권6호
    • /
    • pp.429-437
    • /
    • 2023
  • This paper studied the prediction of structural damage indices to buildings after earthquake occurrence using Multiple Linear Regression (MLR) and Fuzzy Linear Regression (FLR) methods. Particularly, the structural damage degree, represented by the Maximum Inter Story Drift Ratio (MISDR), is an essential factor that ensures the safety of the building. Thus, the seismic response of a steel building was evaluated, utilizing 65 seismic accelerograms as input signals. Among the several response quantities, the focus is on the MISDR, which expresses the postseismic damage status. Using MLR and FLR methods and comparing the outputs with the corresponding evaluated by nonlinear dynamic analyses, it was concluded that the FLR method had the most accurate prediction results in contrast to the MLR method. A blind prediction applying a set of another 10 artificial accelerograms also examined the model's effectiveness. The results revealed that the use of the FLR method had the smallest average percentage error level for every set of applied accelerograms, and thus it is a suitable modeling tool in earthquake engineering.

내풍설계된 철골조 초고층건물의 선형동적해석에 의한 내진성능평가 (Seismic Perfomance Evaluation of Wind-Designed Steel Highrise Buildings Based on Linear Dynamic Analysis)

  • 이철호;김선웅
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.652-659
    • /
    • 2005
  • Even in moderate to low seismic regions like Korean peninsular where wind loading usually governs the structural design of a tall building, the probable structural impact of the design basis earthquake or the maximum credible earthquake on the selected structural system should be considered at least in finalizing the design. In this study, by using response spectrum analysis and linear time history analysis method, seismic performance evaluation was conducted for wind-designed concentrically braced steel highrise buildings. Both spectrum-compatible artificial accelerograms and recorded accelerograms were used as input ground motions for the time history analysis. The analysis results showed that wind-designed concentrically braced steel highrise buildings possess significantly increased elastic seismic capacity due to the system overstrength resulting from the wind-serviceability criterion and the width-to-thickness ratio limits on steel members. Time history analysis results generally tended to underestimate the seismic response as compared to those of response spectrum analysis.

  • PDF

내진설계를 위한 인공지진파 강진지속시간 기준의 평가 (Assessment of the Strong Motion Duration Criterion of Synthetic Accelerograms)

  • 허정원;정호섭;김재민;정연석
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.133-140
    • /
    • 2006
  • This paper addresses a fundamental research subject to complement and improve current domestic design specifications for the strong motion duration criterion and the envelop function of artificial accelerograms that can be applied to the earthquake-proof design of nuclear structures. The criteria for design response spectra and strong motion duration suggested by WRC RG 1.60 and ASCE Standard 4-98 are commonly being used in the profession, and they are first compared with each other and reviewed. By applying 152 real strong earthquake records that are over magnitude of 5 in the rock sites to the strong motion duration criterion in ASCE 4-98, an empirical regression model that predicts the strong motion duration as a function of earthquake magnitude is then developed. Using synthetically generated earthquake time histories for the five cases whose strong motion durations vary from 6 to 15 seconds, a seismic analysis is conducted to identify effects of the strong motion durations on the seismic responses of nuclear structures.

  • PDF

New development of artificial record generation by wavelet theory

  • Amiri, G. Ghodrati;Ashtari, P.;Rahami, H.
    • Structural Engineering and Mechanics
    • /
    • 제22권2호
    • /
    • pp.185-195
    • /
    • 2006
  • Nowadays it is very necessary to generate artificial accelerograms because of lack of adequate earthquake records and vast usage of time-history dynamic analysis to calculate responses of structures. According to the lack of natural records, the best choice is to use proper artificial earthquake records for the specified design zone. These records should be generated in a way that would contain seismic properties of a vast area and therefore could be applied as design records. The main objective of this paper is to present a new method based on wavelet theory to generate more artificial earthquake records, which are compatible with target spectrum. Wavelets are able to decompose time series to several levels that each level covers a specific range of frequencies. If an accelerogram is transformed by Fourier transform to frequency domain, then wavelets are considered as a transform in time-scale domain which frequency has been changed to scale in the recent domain. Since wavelet theory separates each signal, it is able to generate so many artificial records having the same target spectrum.

강진지속시간 기준 개선을 위한 원전 격납구조물의 지진응답해석 (Seismic Response Analysis of NPP Containment Structures to Improve the Guidelines of Strong Motion Duration)

  • 허정원;정호섭;김재민;현창헌
    • 한국지진공학회논문집
    • /
    • 제15권4호
    • /
    • pp.33-43
    • /
    • 2011
  • 이 논문은 원전구조물의 내진설계에 적용되는 인공지진파의 강진지속시간과 포락함수에 대한 현행 국내 설계기준의 개선과 보완을 위해서 필요한 기반연구에 관한 내용을 다루고 있다. USNRC와 ASCE 4-98에서 제안한 응답스펙트럼과 강진지속시간에 대한 규정이 현재 통상적으로 사용되고 있으며, 첫 번째로 두 기준에 대한 비교와 검토를 수행하였다. 다음으로 총 209개의 암반사이트에서 실제 계측된 규모 5.0 이상인 강진기록을 ASCE 4-98의 강진지속시간기준에 적용한 결과를 통계 처리하여 지진규모에 대한 함수로 표현되는 강진지속시간의 실험적 예측모델을 제시하였다. 마지막으로 강진지속시간이 원전구조물의 지진응답특성에 미치는 영향을 파악하기 위하여 6초에서 20초까지 약 2초 간격으로 강진지속시간을 달리하는 10가지 Case에 대한 인공지진파를 각 30개씩 작성하고, 이들을 적용하여 대만 Hualien 지진시험구조물과 국내 울진 원자력발전소 원자로 격납구조물에 대한 광범위한 지진응답해석을 수행하고 그 결과를 분석하였다.

Effect of near field earthquake on the monuments adjacent to underground tunnels using hybrid FEA-ANN technique

  • Jafarnia, Mohsen;Varzaghani, Mehdi Imani
    • Earthquakes and Structures
    • /
    • 제10권4호
    • /
    • pp.757-768
    • /
    • 2016
  • In the past decades, effect of near field earthquake on the historical monuments has attracted the attention of researchers. So, many analyses in this regard have been presented. Tunnels as vital arteries play an important role in management after the earthquake crisis. However, digging tunnels and seismic effects of earthquake on the historical monuments have always been a challenge between engineers and historical supporters. So, in a case study, effect of near field earthquake on the historical monument was investigated. For this research, Finite Element Analysis (FEM) in soil environment and soil-structure interaction was used. In Plaxis 2D software, different accelerograms of near field earthquake were applied to the geometric definition. Analysis validations were performed based on the previous numerical studies. Creating a nonlinear relationship with space parameter, time, angular and numerical model outputs was of practical and critical importance. Hence, artificial Neural Network (ANN) was used and two linear layers and Tansig function were considered. Accuracy of the results was approved by the appropriate statistical test. Results of the study showed that buildings near and far from the tunnel had a special seismic behavior. Scattering of seismic waves on the underground tunnels on the adjacent buildings was influenced by their distance from the tunnel. Finally, a static test expressed optimal convergence of neural network and Plaxis.

지진하중에 의한 구조물의 비선형 거동 예측 (Prediction of Nonlinear Seismic Response)

  • 김희중
    • 한국강구조학회 논문집
    • /
    • 제8권4호통권29호
    • /
    • pp.77-84
    • /
    • 1996
  • The structural members under seismic loading actually show inelastic behavior, so the inelastic responses should be calculated for the seismic design of structures or estimating the structural damage level. Although direct time history analysis may calculate the exact dynamic nonlinear responses for given ground motions, this approach involves a high computational cost and long period. Therefore, it should be developed the approach to estimate nonlinear responses for the practical purpose. The artificial earthquake accelerograms were generated to obtain the smoothed responses spectra, and the samples of generated accelerogram for each seismic event was used to examine average nonlinear response spectra. The stabilized response spectra for each earthquake event was used to evaluate the effects of various yield strength ratios, damping values and nonlinear hysteretic models. The approach, which can simply predict the nonlinear seismic responses of structures, was shown in this study.

  • PDF

Equivalent period and damping of SDOF systems for spectral response of the Japanese highway bridges code

  • Sanchez-Flores, Fernando;Igarashi, Akira
    • Earthquakes and Structures
    • /
    • 제2권4호
    • /
    • pp.377-396
    • /
    • 2011
  • In seismic design and structural assessment using the displacement-based approach, real structures are simplified into equivalent single-degree-of-freedom systems with equivalent properties, namely period and damping. In this work, equations for the optimal pair of equivalent properties are derived using statistical procedures on equivalent linearization and defined in terms of the ductility ratio and initial period of vibration. The modified Clough hysteretic model and 30 artificial accelerograms, compatible with the acceleration spectra for firm and soft soils, defined by the Japanese Design Specifications for Highway Bridges are used in the analysis. The results obtained with the proposed equations are verified and their limitations are discussed.

임의항복강도의 분포가 강구조물의 거동계수에 미치는 영향 (Influence of the Random Yield Strength Distribution on the Behaviour Factor of Steel Structures)

  • 국승규
    • 한국강구조학회 논문집
    • /
    • 제9권2호통권31호
    • /
    • pp.229-235
    • /
    • 1997
  • 임의항복강도가 강구조물의 에너지소산능력에 미치는 영향을 파악하기 위해 본 논문에서는 7개의 강뼈대구조물을 모델링하여 응답스펙트럼해석법에 적용되는 거동계수를 산출하고 그 분포상태를 결정하였다. 또한 지진하중의 임의성이 거동계수에 미치는 영향과 비교하기 위해 주어진 스펙트럼을 만족하는 4개의 인공지진을 시뮬레이션하여 적용하였다. 본 연구의 특성상 방대한 양의 시간-이력계산을 수행하여야 하므로 근사해법인 시간-이력해석법을 개발하여 신뢰도를 검토하고 적용하였다.

  • PDF

Assessment of infill wall topology contribution in the overall response of frame structures under seismic excitation

  • Nanos, N.;Elenas, A.
    • Structural Engineering and Mechanics
    • /
    • 제53권2호
    • /
    • pp.355-372
    • /
    • 2015
  • This paper identifies the effects of infill wall existence and arrangement in the seismic response of steel frame structures. The methodology followed was based on the utilisation of overall seismic response indicators that distil the complexity of structural response in a single value hence enabling their straightforward comparative and statistical post process. The overall structure damage index after Park/Ang ($OSDI_{PA}$) and the maximum inter-story drift ratio (MISDR) have been selected as widely utilized structural seismic response parameters in contemporary state of art. In this respect a set of 225 Greek antiseismic code (EAK) spectrum compatible artificial accelerograms have been created and a series of non-linear dynamic analyses have been executed. Data were obtained through nonlinear dynamic analyses carried on an indicative steel frame structure with 5 different infill wall topologies. Results indicated the significant overall contribution of infill walls with a reduction that ranged 35-47% of the maximum and 74-81% of the average recorded $OSDI_{PA}$ values followed by an overall reduction of 64-67% and 58-61% for the respective maximum and average recorded MISDR values demonstrating the relative benefits of infill walls presence overall as well as localised with similar reductions observed in 1st level damage indicators.