• Title/Summary/Keyword: Artificial Neutral Network

Search Result 19, Processing Time 0.025 seconds

Approximate and Three-Dimensional Modeling of Brightness Levels in Interior Spaces by Using Artificial Neural Networks

  • Sahin, Mustafa;Oguz, Yuksel;Buyuktumturk, Fuat
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1822-1829
    • /
    • 2015
  • In this study, artificial neural networks were used to determine the intensity of brightness in interior spaces. The illumination elements to illuminate indoor spaces were considered, not individually, but as a system. So, during the planned maintenance periods of an illumination system, after its design and installation, simple brightness level measurements must be taken. For a three-dimensional evaluation of the brightness level in indoor spaces in a speedy and accurate manner, the obtained brightness level measurement results and artificial neural network model were used. Upon estimation of the most suitable brightness level for indoor spaces by using the artificial neutral network model, the energy demands required by the illumination elements decreased. Consequently, in this study, with estimations of brightness levels, the extent to which the artificial neutral networks become successful was observed and more correct results have been obtained in terms of both economy and usage.

A Exploration of Neural Network Development Methodologies (인공지능 네트워크의 Methodology 개발 상호비교)

  • Lee, Ki-Dong;Meso, Peter
    • Journal of Digital Convergence
    • /
    • v.9 no.4
    • /
    • pp.91-101
    • /
    • 2011
  • We examined current publications on artificial neural network development with a View to identifying the methodologies that are being used to develop these networks, how extensive these methodologies are, the categorization of these methodologies, if these methodologies demonstrate a common underlying and generic (standard) methodology for the development of artificial neural networks, and how closely these methodologies (and the underlying genetic methodology, if established) relate to the conventional systems development methodologies.

Generalized evolutionary optimum design of fiber-reinforced tire belt structure

  • Cho, J.R.;Lee, J.H.;Kim, K.W.;Lee, S.B.
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.451-466
    • /
    • 2013
  • This paper deals with the multi-objective optimization of tire reinforcement structures such as the tread belt and the carcass path. The multi-objective functions are defined in terms of the discrete-type design variables and approximated by artificial neutral network, and the sensitivity analyses of these functions are replaced with the iterative genetic evolution. The multi-objective optimization algorithm introduced in this paper is not only highly CPU-time-efficient but it can also be applicable to other multi-objective optimization problems in which the objective function, the design variables and the constraints are not continuous but discrete. Through the illustrative numerical experiments, the fiber-reinforced tire belt structure is optimally tailored. The proposed multi-objective optimization algorithm is not limited to the tire reinforcement structure, but it can be applicable to the generalized multi-objective structural optimization problems in various engineering applications.

An Efficient Guitar Chords Classification System Using Transfer Learning (전이학습을 이용한 효율적인 기타코드 분류 시스템)

  • Park, Sun Bae;Lee, Ho-Kyoung;Yoo, Do Sik
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.10
    • /
    • pp.1195-1202
    • /
    • 2018
  • Artificial neural network is widely used for its excellent performance and implementability. However, traditional neural network needs to learn the system from scratch, with the addition of new input data, the variation of the observation environment, or the change in the form of input/output data. To resolve such a problem, the technique of transfer learning has been proposed. Transfer learning constructs a newly developed target system partially updating existing system and hence provides much more efficient learning process. Until now, transfer learning is mainly studied in the field of image processing and is not yet widely employed in acoustic data processing. In this paper, focusing on the scalability of transfer learning, we apply the concept of transfer learning to the problem of guitar chord classification and evaluate its performance. For this purpose, we build a target system of convolutional neutral network (CNN) based 48 guitar chords classification system by applying the concept of transfer learning to a source system of CNN based 24 guitar chords classification system. We show that the system with transfer learning has performance similar to that of conventional system, but it requires only half the learning time.

Active Vibration Control of A Time-Varying Cantilever Beam Using Band Pass Filters and Artificial Neural Network (신경회로망과 능동대역필터를 이용한 시변 외팔보 능동 진동제어)

  • Hamm, Gil;Rhee, Huinam;Yoon, Doo Byung;Han, Soon Woo;Park, Jin Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.353-354
    • /
    • 2014
  • An active vibration control technique of a time-varying cantilever beam is proposed in this study. A simple in-house coil sensor instead of expensive commercial sensors was used to measure the vibrational displacement of the beam. Active band pass filters and artificial neutral net works detect the frequencies, amplitudes, and phases of the main vibration mode. The time constants of the low pass filter representing the positive position feedback controller are updated in real-time, which generates the control voltage input to actuate the piezoelectric actuator and suppress the vibration. An experiment was successfully performed to verify the algorithm for a cantilever beam, which fundamental natural frequency arbitrarily varies between 9 Hz ~ 18 Hz. The present active vibration suppression technique can be applied to variety of structures which undergoes large variation of dynamic characteristics while operating.

  • PDF

Voice Frequency Synthesis using VAW-GAN based Amplitude Scaling for Emotion Transformation

  • Kwon, Hye-Jeong;Kim, Min-Jeong;Baek, Ji-Won;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.713-725
    • /
    • 2022
  • Mostly, artificial intelligence does not show any definite change in emotions. For this reason, it is hard to demonstrate empathy in communication with humans. If frequency modification is applied to neutral emotions, or if a different emotional frequency is added to them, it is possible to develop artificial intelligence with emotions. This study proposes the emotion conversion using the Generative Adversarial Network (GAN) based voice frequency synthesis. The proposed method extracts a frequency from speech data of twenty-four actors and actresses. In other words, it extracts voice features of their different emotions, preserves linguistic features, and converts emotions only. After that, it generates a frequency in variational auto-encoding Wasserstein generative adversarial network (VAW-GAN) in order to make prosody and preserve linguistic information. That makes it possible to learn speech features in parallel. Finally, it corrects a frequency by employing Amplitude Scaling. With the use of the spectral conversion of logarithmic scale, it is converted into a frequency in consideration of human hearing features. Accordingly, the proposed technique provides the emotion conversion of speeches in order to express emotions in line with artificially generated voices or speeches.

Method of an Assistance for Evaluation of Learning using Expression Recognition based on Deep Learning (심층학습 기반 표정인식을 통한 학습 평가 보조 방법 연구)

  • Lee, Ho-Jung;Lee, Deokwoo
    • Journal of Engineering Education Research
    • /
    • v.23 no.2
    • /
    • pp.24-30
    • /
    • 2020
  • This paper proposes the approaches to the evaluation of learning using concepts of artificial intelligence. Among various techniques, deep learning algorithm is employed to achieve quantitative results of evaluation. In particular, this paper focuses on the process-based evaluation instead of the result-based one using face expression. The expression is simply acquired by digital camera that records face expression when students solve sample test problems. Face expressions are trained using convolutional neural network (CNN) model followed by classification of expression data into three categories, i.e., easy, neutral, difficult. To substantiate the proposed approach, the simulation results show promising results, and this work is expected to open opportunities for intelligent evaluation system in the future.

Study on the Prediction Model of Reheat Gas Turbine Inlet Temperature using Deep Neural Network Technique (심층신경망 기법을 이용한 재열 가스터빈 입구온도 예측모델에 관한 연구)

  • Young-Bok Han;Sung-Ho Kim;Byon-Gon Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.841-852
    • /
    • 2023
  • Gas turbines, which are used as generators for frequency regulation of the domestic power system, are increasing in use due to the carbon-neutral policy, quick startup and shutdown, and high thermal efficiency. Since the gas turbine rotates the turbine using high-temperature flame, the turbine inlet temperature is acting as a key factor determining the performance and lifespan of the device. However, since the inlet temperature cannot be directly measured, the temperature calculated by the manufacturer is used or the temperature predicted based on field experience is applied, which makes it difficult to operate and maintain the gas turbine in a stable manner. In this study, we present a model that can predict the inlet temperature of a reheat gas turbine based on Deep Neural Network (DNN), which is widely used in artificial neural networks, and verify the performance of the proposed DNN based on actual data.

The prediction of the stock price movement after IPO using machine learning and text analysis based on TF-IDF (증권신고서의 TF-IDF 텍스트 분석과 기계학습을 이용한 공모주의 상장 이후 주가 등락 예측)

  • Yang, Suyeon;Lee, Chaerok;Won, Jonggwan;Hong, Taeho
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.237-262
    • /
    • 2022
  • There has been a growing interest in IPOs (Initial Public Offerings) due to the profitable returns that IPO stocks can offer to investors. However, IPOs can be speculative investments that may involve substantial risk as well because shares tend to be volatile, and the supply of IPO shares is often highly limited. Therefore, it is crucially important that IPO investors are well informed of the issuing firms and the market before deciding whether to invest or not. Unlike institutional investors, individual investors are at a disadvantage since there are few opportunities for individuals to obtain information on the IPOs. In this regard, the purpose of this study is to provide individual investors with the information they may consider when making an IPO investment decision. This study presents a model that uses machine learning and text analysis to predict whether an IPO stock price would move up or down after the first 5 trading days. Our sample includes 691 Korean IPOs from June 2009 to December 2020. The input variables for the prediction are three tone variables created from IPO prospectuses and quantitative variables that are either firm-specific, issue-specific, or market-specific. The three prospectus tone variables indicate the percentage of positive, neutral, and negative sentences in a prospectus, respectively. We considered only the sentences in the Risk Factors section of a prospectus for the tone analysis in this study. All sentences were classified into 'positive', 'neutral', and 'negative' via text analysis using TF-IDF (Term Frequency - Inverse Document Frequency). Measuring the tone of each sentence was conducted by machine learning instead of a lexicon-based approach due to the lack of sentiment dictionaries suitable for Korean text analysis in the context of finance. For this reason, the training set was created by randomly selecting 10% of the sentences from each prospectus, and the sentence classification task on the training set was performed after reading each sentence in person. Then, based on the training set, a Support Vector Machine model was utilized to predict the tone of sentences in the test set. Finally, the machine learning model calculated the percentages of positive, neutral, and negative sentences in each prospectus. To predict the price movement of an IPO stock, four different machine learning techniques were applied: Logistic Regression, Random Forest, Support Vector Machine, and Artificial Neural Network. According to the results, models that use quantitative variables using technical analysis and prospectus tone variables together show higher accuracy than models that use only quantitative variables. More specifically, the prediction accuracy was improved by 1.45% points in the Random Forest model, 4.34% points in the Artificial Neural Network model, and 5.07% points in the Support Vector Machine model. After testing the performance of these machine learning techniques, the Artificial Neural Network model using both quantitative variables and prospectus tone variables was the model with the highest prediction accuracy rate, which was 61.59%. The results indicate that the tone of a prospectus is a significant factor in predicting the price movement of an IPO stock. In addition, the McNemar test was used to verify the statistically significant difference between the models. The model using only quantitative variables and the model using both the quantitative variables and the prospectus tone variables were compared, and it was confirmed that the predictive performance improved significantly at a 1% significance level.

Fault Diagnosis Method for Automatic Machine Using Artificial Neutral Network Based on DWT Power Spectral Density (인공신경망을 이용한 DWT 전력스펙트럼 밀도 기반 자동화 기계 고장 진단 기법)

  • Kang, Kyung-Won
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.2
    • /
    • pp.78-83
    • /
    • 2019
  • Sounds based machine fault diagnosis recovers all the studies that aim to detect automatically abnormal sound on machines using the acoustic emission by these machines. Conventional methods that use mathematical models have been found inaccurate because of the complexity of the industry machinery systems and the obvious existence of nonlinear factors such as noises. Therefore, any fault diagnosis issue can be treated as a pattern recognition problem. We propose here an automatic fault diagnosis method of hand drills using discrete wavelet transform(DWT) and pattern recognition techniques such as artificial neural networks(ANN). We first conduct a filtering analysis based on DWT. The power spectral density(PSD) is performed on the wavelet subband except for the highest and lowest low frequency subband. The PSD of the wavelet coefficients are extracted as our features for classifier based on ANN the pattern recognition part. The results show that the proposed method can be effectively used not only to detect defects but also to various automatic diagnosis system based on sound.