• Title/Summary/Keyword: Artificial Neural Network Analysis (ANN)

Search Result 371, Processing Time 0.033 seconds

Propulsion System Modeling and Reduction for Conceptual Truss-Braced Wing Aircraft Design

  • Lee, Kyunghoon;Nam, Taewoo;Kang, Shinseong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.651-661
    • /
    • 2017
  • A truss-braced wing (TBW) aircraft has recently received increasing attention due to higher aerodynamic efficiency compared to conventional cantilever wing aircraft. For conceptual TBW aircraft design, we developed a propulsion-and-airframe integrated design environment by replacing a semi-empirical turbofan engine model with a thermodynamic cycle-based one built upon the numerical propulsion system simulation (NPSS). The constructed NPSS model benefitted TBW aircraft design study, as it could handle engine installation effects influencing engine fuel efficiency. The NPSS model also contributed to broadening TBW aircraft design space, for it provided turbofan engine design variables involving a technology factor reflecting progress in propulsion technology. To effectively consolidate the NPSS propulsion model with the TBW airframe model, we devised a rapid, approximate substitute of the NPSS model by reduced-order modeling (ROM) to resolve difficulties in model integration. In addition, we formed an artificial neural network (ANN) that associates engine component attributes evaluated by object-oriented weight analysis of turbine engine (WATE++) with engine design variables to determine engine weight and size, both of which bring together the propulsion and airframe system models. Through propulsion-andairframe design space exploration, we optimized TBW aircraft design for fuel saving and revealed that a simple engine model neglecting engine installation effects may overestimate TBW aircraft performance.

Calculation of Stability Number of Tetrapods Using Weights and Biases of ANN Model (인공신경망 모델의 가중치와 편의를 이용한 테트라포드의 안정수 계산 방법)

  • Lee, Jae Sung;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.5
    • /
    • pp.277-283
    • /
    • 2016
  • Tetrapod is one of the most widely used concrete armor units for rubble mound breakwaters. The calculation of the stability number of Tetrapods is necessary to determine the optimal weight of Tetrapods. Many empirical formulas have been developed to calculate the stability number of Tetrapods, from the Hudson formula in 1950s to the recent one developed by Suh and Kang. They were developed by using the regression analysis to determine the coefficients of an assumed formula using the experimental data. Recently, software engineering (or machine learning) methods are introduced as a large amount of experimental data becomes available, e.g. artificial neural network (ANN) models for rock armors. However, these methods are seldom used probably because they did not significantly improve the accuracy compared with the empirical formula and/or the engineers are not familiar with them. In this study, we propose an explicit method to calculate the stability number of Tetrapods using the weights and biases of an ANN model. This method can be used by an engineer who has basic knowledge of matrix operation without requiring knowledge of ANN, and it is more accurate than previous empirical formulas.

The Pattern Recognition Methods for Emotion Recognition with Speech Signal (음성신호를 이용한 감성인식에서의 패턴인식 방법)

  • Park Chang-Hyun;Sim Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.284-288
    • /
    • 2006
  • In this paper, we apply several pattern recognition algorithms to emotion recognition system with speech signal and compare the results. Firstly, we need emotional speech databases. Also, speech features for emotion recognition is determined on the database analysis step. Secondly, recognition algorithms are applied to these speech features. The algorithms we try are artificial neural network, Bayesian learning, Principal Component Analysis, LBG algorithm. Thereafter, the performance gap of these methods is presented on the experiment result section. Truly, emotion recognition technique is not mature. That is, the emotion feature selection, relevant classification method selection, all these problems are disputable. So, we wish this paper to be a reference for the disputes.

The Pattern Recognition Methods for Emotion Recognition with Speech Signal (음성신호를 이용한 감성인식에서의 패턴인식 방법)

  • Park Chang-Hyeon;Sim Gwi-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.347-350
    • /
    • 2006
  • In this paper, we apply several pattern recognition algorithms to emotion recognition system with speech signal and compare the results. Firstly, we need emotional speech databases. Also, speech features for emotion recognition is determined on the database analysis step. Secondly, recognition algorithms are applied to these speech features. The algorithms we try are artificial neural network, Bayesian learning, Principal Component Analysis, LBG algorithm. Thereafter, the performance gap of these methods is presented on the experiment result section. Truly, emotion recognition technique is not mature. That is, the emotion feature selection, relevant classification method selection, all these problems are disputable. So, we wish this paper to be a reference for the disputes.

  • PDF

Future water quality analysis of the Anseongcheon River basin, Korea under climate change

  • Kim, Deokwhan;Kim, Jungwook;Joo, Hongjun;Han, Daegun;Kim, Hung Soo
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) predicted that recent extreme hydrological events would affect water quality and aggravate various forms of water pollution. To analyze changes in water quality due to future climate change, input data (precipitation, average temperature, relative humidity, average wind speed and sunlight) were established using the Representative Concentration Pathways (RCP) 8.5 climate change scenario suggested by the AR5 and calculated the future runoff for each target period (Reference:1989-2015; I: 2016-2040; II: 2041-2070; and III: 2071-2099) using the semi-distributed land use-based runoff processes (SLURP) model. Meteorological factors that affect water quality (precipitation, temperature and runoff) were inputted into the multiple linear regression analysis (MLRA) and artificial neural network (ANN) models to analyze water quality data, dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (T-N) and total phosphorus (T-P). Future water quality prediction of the Anseongcheon River basin shows that DO at Gongdo station in the river will drop by 35% in autumn by the end of the $21^{st}$ century and that BOD, COD and SS will increase by 36%, 20% and 42%, respectively. Analysis revealed that the oxygen demand at Dongyeongyo station will decrease by 17% in summer and BOD, COD and SS will increase by 30%, 12% and 17%, respectively. This study suggests that there is a need to continuously monitor the water quality of the Anseongcheon River basin for long-term management. A more reliable prediction of future water quality will be achieved if various social scenarios and climate data are taken into consideration.

Analysis of the Construction Cost Prediction Performance according to Feature Scaling and Log Conversion of Target Variable (피처 스케일링과 타겟변수 로그변환에 따른 건축 공사비 예측 성능 분석)

  • Kang, Yoon-Ho;Yun, Seok-Heon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.3
    • /
    • pp.317-326
    • /
    • 2022
  • With the development of various technologies in the area of artificial intelligence, a number of studies to application of artificial intelligence technology in the construction field are underway. Diverse technologies have been applied to the task of predicting construction costs, and construction cost prediction technologies applying artificial intelligence technologies have recently been developed. However, it is difficult to secure the vast amount of construction cost data required for machine learning, which has not yet been practically used. In this study, to predict the construction cost, the latest artificial neural network(ANN) method is used to propose a method to improve the construction cost prediction performance. In particular, to improve predictive performance, a log conversion method of target variables and a feature scaling method to eliminate the difference in the relative influence of each column data are applied, and their performance in predicting construction cost is compared and analyzed.

A Study of the Valid Model(Kernel Regression) of Main Feed-Water for Turbine Cycle (주급수 유량의 유효 모델(커널 회귀)에 대한 연구)

  • Yang, Hac-Jin;Kim, Seong-Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.663-670
    • /
    • 2019
  • Corrective thermal performance analysis is required for power plants' turbine cycles to determine the performance status of the cycle and improve the economic operation of the power plant. We developed a sectional classification method for the main feed-water flow to make precise corrections for the performance analysis based on the Performance Test Code (PTC) of the American Society of Mechanical Engineers (ASME). The method was developed for the estimation of the turbine cycle performance in a classified section. The classification is based on feature identification of the correlation status of the main feed-water flow measurements. We also developed predictive algorithms for the corrected main feed-water through a Kernel Regression (KR) model for each classified feature area. The method was compared with estimation using an Artificial Neural Network (ANN). The feature classification and predictive model provided more practical and reliable methods for the corrective thermal performance analysis of a turbine cycle.

Research on Developing a Conversational AI Callbot Solution for Medical Counselling

  • Won Ro LEE;Jeong Hyon CHOI;Min Soo KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.9-13
    • /
    • 2023
  • In this study, we explored the potential of integrating interactive AI callbot technology into the medical consultation domain as part of a broader service development initiative. Aimed at enhancing patient satisfaction, the AI callbot was designed to efficiently address queries from hospitals' primary users, especially the elderly and those using phone services. By incorporating an AI-driven callbot into the hospital's customer service center, routine tasks such as appointment modifications and cancellations were efficiently managed by the AI Callbot Agent. On the other hand, tasks requiring more detailed attention or specialization were addressed by Human Agents, ensuring a balanced and collaborative approach. The deep learning model for voice recognition for this study was based on the Transformer model and fine-tuned to fit the medical field using a pre-trained model. Existing recording files were converted into learning data to perform SSL(self-supervised learning) Model was implemented. The ANN (Artificial neural network) neural network model was used to analyze voice signals and interpret them as text, and after actual application, the intent was enriched through reinforcement learning to continuously improve accuracy. In the case of TTS(Text To Speech), the Transformer model was applied to Text Analysis, Acoustic model, and Vocoder, and Google's Natural Language API was applied to recognize intent. As the research progresses, there are challenges to solve, such as interconnection issues between various EMR providers, problems with doctor's time slots, problems with two or more hospital appointments, and problems with patient use. However, there are specialized problems that are easy to make reservations. Implementation of the callbot service in hospitals appears to be applicable immediately.

A Study on the Methodology of Extracting the vulnerable districts of the Aged Welfare Using Artificial Intelligence and Geospatial Information (인공지능과 국토정보를 활용한 노인복지 취약지구 추출방법에 관한 연구)

  • Park, Jiman;Cho, Duyeong;Lee, Sangseon;Lee, Minseob;Nam, Hansik;Yang, Hyerim
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.169-186
    • /
    • 2018
  • The social influence of the elderly population will accelerate in a rapidly aging society. The purpose of this study is to establish a methodology for extracting vulnerable districts of the welfare of the aged through machine learning(ML), artificial neural network(ANN) and geospatial analysis. In order to establish the direction of analysis, this progressed after an interview with volunteers who over 65-year old people, public officer and the manager of the aged welfare facility. The indicators are the geographic distance capacity, elderly welfare enjoyment, officially assessed land price and mobile communication based on old people activities where 500 m vector areal unit within 15 minutes in Yongin-city, Gyeonggi-do. As a result, the prediction accuracy of 83.2% in the support vector machine(SVM) of ML using the RBF kernel algorithm was obtained in simulation. Furthermore, the correlation result(0.63) was derived from ANN using backpropagation algorithm. A geographically weighted regression(GWR) was also performed to analyze spatial autocorrelation within variables. As a result of this analysis, the coefficient of determination was 70.1%, which showed good explanatory power. Moran's I and Getis-Ord Gi coefficients are analyzed to investigate spatially outlier as well as distribution patterns. This study can be used to solve the welfare imbalance of the aged considering the local conditions of the government recently.

Hemming Process Design of the Permalloy Shielding Can for the Stiffness and Shape Accuracy (퍼멀로이 실딩캔의 강성증대 및 형상 정밀도를 위한 최적 헤밍 공정설계)

  • Lee, Sun-Bong;Kim, Dong-Hwan;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.29-35
    • /
    • 2002
  • This study shows the process design and forming analysis of permalloy shielding can that support the automobile multi-display parts to indicate the accurate information of car. This study is particularly important, since the accuracy of permalloy shielding can is known to affect the magnetic properties such as coercivity and permeability quite sensitively. The objective functions are defects such as hemming wind, hemming length, hemming wrap and tightness in prehemming process. The pre-hemming angle is considered as design parameter. The commercial finite element program PAM-STAMP™ was used to simulate the pre-hemming and hemming process. The ANN (Artificial Neural Network) has been implemented for minimizing of objective function and for investigating effect of punch angle relevant to the pre-hemming process. The results of analysis to validate the proposed design method are presented.