• Title/Summary/Keyword: Artificial Neural Network Analysis (ANN)

Search Result 369, Processing Time 0.028 seconds

Role of Artificial Neural Networks in Multidisciplinary Optimization and Axiomatic Design

  • Lee, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.695-700
    • /
    • 2008
  • Artificial neural network (ANN) has been extensively used in areas of nonlinear system modeling, analysis and design applications. Basically, ANN has its distinct capabilities of implementing system identification and/or function approximation using a number of input/output patterns that can be obtained via numerical and/or experimental manners. The paper describes a role of ANN, especially a back-propagation neural network (BPN) in the context of engineering analysis, design and optimization. Fundamental mechanism of BPN is briefly summarized in terms of training procedure and function approximation. The BPN based causality analysis (CA) is further discussed to realize the problem decomposition in the context of multidisciplinary design optimization. Such CA is also applied to quantitatively evaluate the uncoupled or decoupled design matrix in the context of axiomatic design with the independence axiom.

  • PDF

Time and Cost Analysis for Highway Road Construction Project Using Artificial Neural Networks

  • Naik, M. Gopal;Radhika, V. Shiva Bala
    • Journal of Construction Engineering and Project Management
    • /
    • v.5 no.1
    • /
    • pp.26-31
    • /
    • 2015
  • Success of the construction companies is based on the successful completion of projects within the agreed cost and time limits. Artificial neural networks (ANN) have recently attracted much attention because of their ability to solve the qualitative and quantitative problems faced in the construction industry. For the estimation of cost and duration different ANN models were developed. The database consists of data collected from completed projects. The same data is normalised and used as inputs and targets for developing ANN models. The models are trained, tested and validated using MATLAB R2013a Software. The results obtained are the ANN predicted outputs which are compared with the actual data, from which deviation is calculated. For this purpose, two successfully completed highway road projects are considered. The Nftool (Neural network fitting tool) and Nntool (Neural network/ Data Manager) approaches are used in this study. Using Nftool with trainlm as training function and Nntool with trainbr as the training function, both the Projects A and B have been carried out. Statistical analysis is carried out for the developed models. The application of neural networks when forming a preliminary estimate, would reduce the time and cost of data processing. It helps the contractor to take the decision much easier.

A SEM-ANN Two-step Approach for Predicting Determinants of Cloud Service Use Intention (SEM-Artificial Neural Network 2단계 접근법에 의한 클라우드 스토리지 서비스 이용의도 영향요인에 관한 연구)

  • Guangbo Jiang;Sundong Kwon
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.6
    • /
    • pp.91-111
    • /
    • 2023
  • This study aims to identify the influencing factors of intention to use cloud services using the SEM-ANN two-step approach. In previous studies of SEM-ANN, SEM presented R2 and ANN presented MSE(mean squared error), so analysis performance could not be compared. In this study, R2 and MSE were calculated and presented by SEM and ANN, respectively. Then, analysis performance was compared and feature importances were compared by sensitivity analysis. As a result, the ANN default model improved R2 by 2.87 compared to the PLS model, showing a small Cohen's effect size. The ANN optimization model improved R2 by 7.86 compared to the PLS model, showing a medium Cohen effect size. In normalized feature importances, the order of importances was the same for PLS and ANN. The contribution of this study, which links structural equation modeling to artificial intelligence, is that it verified the effect of improving the explanatory power of the research model while maintaining the order of importance of independent variables.

Multivariate Time Series Analysis for Rainfall Prediction with Artificial Neural Networks

  • Narimani, Roya;Jun, Changhyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.135-135
    • /
    • 2021
  • In water resources management, rainfall prediction with high accuracy is still one of controversial issues particularly in countries facing heavy rainfall during wet seasons in the monsoon climate. The aim of this study is to develop an artificial neural network (ANN) for predicting future six months of rainfall data (from April to September 2020) from daily meteorological data (from 1971 to 2019) such as rainfall, temperature, wind speed, and humidity at Seoul, Korea. After normalizing these data, they were trained by using a multilayer perceptron (MLP) as a class of the feedforward ANN with 15,000 neurons. The results show that the proposed method can analyze the relation between meteorological datasets properly and predict rainfall data for future six months in 2020, with an overall accuracy over almost 70% and a root mean square error of 0.0098. This study demonstrates the possibility and potential of MLP's applications to predict future daily rainfall patterns, essential for managing flood risks and protecting water resources.

  • PDF

Modeling shotcrete mix design using artificial neural network

  • Muhammad, Khan;Mohammad, Noor;Rehman, Fazal
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.167-181
    • /
    • 2015
  • "Mortar or concrete pneumatically projected at high velocity onto a surface" is called Shotcrete. Models that predict shotcrete design parameters (e.g. compressive strength, slump etc) from any mixing proportions of admixtures could save considerable experimentation time consumed during trial and error based procedures. Artificial Neural Network (ANN) has been widely used for similar purposes; however, such models have been rarely applied on shotcrete design. In this study 19 samples of shotcrete test panels with varying quantities of water, steel fibers and silica fume were used to determine their slump, cost and compressive strength at different ages. A number of 3-layer Back propagation Neural Network (BPNN) models of different network architectures were used to train the network using 15 samples, while 4 samples were randomly chosen to validate the model. The predicted compressive strength from linear regression lacked accuracy with $R^2$ value of 0.36. Whereas, outputs from 3-5-3 ANN architecture gave higher correlations of $R^2$ = 0.99, 0.95 and 0.98 for compressive strength, cost and slump parameters of the training data and corresponding $R^2$ values of 0.99, 0.99 and 0.90 for the validation dataset. Sensitivity analysis of output variables using ANN can unfold the nonlinear cause and effect relationship for otherwise obscure ANN model.

An ANN-based Intelligent Spectrum Sensing Algorithm for Space-based Satellite Networks

  • Xiujian Yang;Lina Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.980-998
    • /
    • 2023
  • In Low Earth Orbit (LEO) satellite networks, satellites operate fast and the inter-satellite link change period is short. In order to sense the spectrum state in LEO satellite networks in real-time, a space-based satellite network intelligent spectrum sensing algorithm based on artificial neural network (ANN) is proposed, while Geosynchronous Earth Orbit (GEO) satellites are introduced to make fast and effective judgments on the spectrum state of LEO satellites by using their stronger arithmetic power. Firstly, the visibility constraints between LEO satellites and GEO satellites are analyzed to derive the inter-satellite link building matrix and complete the inter-satellite link situational awareness. Secondly, an ANN-based energy detection (ANN-ED) algorithm is proposed based on the traditional energy detection algorithm and artificial neural network. The ANN module is used to determine the spectrum state and optimize the traditional energy detection algorithm. GEO satellites are used to fuse the information sensed by LEO satellites and then give the spectrum decision, thereby realizing the inter-satellite spectrum state sensing. Finally, the sensing quality is evaluated by the analysis of sensing delay and sensing energy consumption. The simulation results show that our proposed algorithm has lower complexity, the sensing delay and sensing energy consumption compared with the traditional energy detection method.

Development of Prediction Model for Root Industry Production Process Using Artificial Neural Network (인공신경망을 이용한 뿌리산업 생산공정 예측 모델 개발)

  • Bak, Chanbeom;Son, Hungsun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.23-27
    • /
    • 2017
  • This paper aims to develop a prediction model for the product quality of a casting process. Prediction of the product quality utilizes an artificial neural network (ANN) in order to renovate the manufacturing technology of the root industry. Various aspects of the research on the prediction algorithm for the casting process using an ANN have been investigated. First, the key process parameters have been selected by means of a statistics analysis of the process data. Then, the optimal number of the layers and neurons in the ANN structure is established. Next, feed-forward back propagation and the Levenberg-Marquardt algorithm are selected to be used for training. Simulation of the predicted product quality shows that the prediction is accurate. Finally, the proposed method shows that use of the ANN can be an effective tool for predicting the results of the casting process.

Sensorless Vector Control of Induction Motor by Artificial Neural Network (인공 신경망에 의한 유도전동기의 센서리스 벡터제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Park, Ki-Tae;Choi, Jung-Hoon;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.307-312
    • /
    • 2007
  • The paper is proposed artificial neural network(ANN) sensorless control of induction motor drive with fuzzy learning control-fuzzy neural network(FLC-FNN) controller. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of induction motor using FLC-FNN and estimation of speed using ANN controller The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The proposed control algorithm is applied to induction motor drive system controlled FLC-FNN and ANN controller, Also, this paper is proposed the analysis results to verify the effectiveness of the FLC-FNN and ANN controller.

  • PDF

Prediction of acceleration and impact force values of a reinforced concrete slab

  • Erdem, R. Tugrul
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.563-575
    • /
    • 2014
  • Concrete which is a composite material is frequently used in construction works. Properties and behavior of concrete are significant under the effect of different loading cases. Impact loading which is a sudden dynamic one may have destructive effects on structures. Testing apparatuses are designed to investigate the impact effect on test members. Artificial Neural Network (ANN) is a computational model that is inspired by the structure or functional aspects of biological neural networks. It can be defined as an emulation of biological neural system. In this study, impact parameters as acceleration and impact force values of a reinforced concrete slab are obtained by using a testing apparatus and essential test devices. Afterwards, ANN analysis which is used to model different physical dynamic processes depending on several variables is performed in the numerical part of the study. Finally, test and predicted results are compared and it's seen that ANN analysis is an alternative way to predict the results successfully.

Vulnerability Assessment of a Large Sized Power System Using Neural Network Considering Various Feature Extraction Methods

  • Haidar, Ahmed M. A;Mohamed, Azah;Hussian, Aini
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.167-176
    • /
    • 2008
  • Vulnerability assessment of power systems is important so as to determine their ability to continue to provide service in case of any unforeseen catastrophic contingency such as power system component failures, communication system failures, human operator error, and natural calamity. An approach towards the development of on-line power system vulnerability assessment is by means of using an artificial neural network(ANN), which is being used successfully in many areas of power systems because of its ability to handle the fusion of multiple sources of data and information. An important consideration when applying ANN in power system vulnerability assessment is the proper selection and dimension reduction of training features. This paper aims to investigate the effect of using various feature extraction methods on the performance of ANN as well as to evaluate and compare the efficiency of the proposed feature extraction method named as neural network weight extraction. For assessing vulnerability of power systems, a vulnerability index based on power system loss is used and considered as the ANN output. To illustrate the effectiveness of ANN considering various feature extraction methods for vulnerability assessment on a large sized power system, it is verified on the IEEE 300-bus test system.