• Title/Summary/Keyword: Artificial Neural Network Analysis (ANN)

Search Result 369, Processing Time 0.023 seconds

Automated Analysis Approach for the Detection of High Survivable Ransomware

  • Ahmed, Yahye Abukar;Kocer, Baris;Al-rimy, Bander Ali Saleh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2236-2257
    • /
    • 2020
  • Ransomware is malicious software that encrypts the user-related files and data and holds them to ransom. Such attacks have become one of the serious threats to cyberspace. The avoidance techniques that ransomware employs such as obfuscation and/or packing makes it difficult to analyze such programs statically. Although many ransomware detection studies have been conducted, they are limited to a small portion of the attack's characteristics. To this end, this paper proposed a framework for the behavioral-based dynamic analysis of high survivable ransomware (HSR) with integrated valuable feature sets. Term Frequency-Inverse document frequency (TF-IDF) was employed to select the most useful features from the analyzed samples. Support Vector Machine (SVM) and Artificial Neural Network (ANN) were utilized to develop and implement a machine learning-based detection model able to recognize certain behavioral traits of high survivable ransomware attacks. Experimental evaluation indicates that the proposed framework achieved an area under the ROC curve of 0.987 and a few false positive rates 0.007. The experimental results indicate that the proposed framework can detect high survivable ransomware in the early stage accurately.

Optimization of Process Variables of Shape Drawing for Steering Spline Shaft (조향장치용 스플라인 샤프트 이형인발 공정변수 최적화)

  • Lee, S.K.;Kim, S.M.;Lee, S.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.2
    • /
    • pp.132-137
    • /
    • 2010
  • In the multi-pass shape drawing process, the appropriate process design is very important to produce sound products. The reduction ratio, die angle, and the intermediate die shape are very important process variable of the multi-pass shape drawing. The aim of this study is the determination of the reduction ratio, die angle, and the intermediate die shape of the 2 pass shape drawing process for producing steering spline shaft. In this study, FE analysis, Taguchi method, and ANN(artificial neural network) were applied to determine the appropriate reduction ratio, die angle, and intermediate die shape. After the determination of the process variables, FE analysis and drawing experiment were performed to evaluate the effectiveness of the determined process variables. The dimensional accuracy of the final drawn spline shaft was evaluated by using 3D surface profiler and 3D laser digitizing system.

Leveraging artificial intelligence to assess explosive spalling in fire-exposed RC columns

  • Seitllari, A.;Naser, M.Z.
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.271-282
    • /
    • 2019
  • Concrete undergoes a series of thermo-based physio-chemical changes once exposed to elevated temperatures. Such changes adversely alter the composition of concrete and oftentimes lead to fire-induced explosive spalling. Spalling is a multidimensional, complex and most of all sophisticated phenomenon with the potential to cause significant damage to fire-exposed concrete structures. Despite past and recent research efforts, we continue to be short of a systematic methodology that is able of accurately assessing the tendency of concrete to spall under fire conditions. In order to bridge this knowledge gap, this study explores integrating novel artificial intelligence (AI) techniques; namely, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA), together with traditional statistical analysis (multilinear regression (MLR)), to arrive at state-of-the-art procedures to predict occurrence of fire-induced spalling. Through a comprehensive datadriven examination of actual fire tests, this study demonstrates that AI techniques provide attractive tools capable of predicting fire-induced spalling phenomenon with high precision.

Landslide Susceptibility Analysis in Jeju Using Artificial Neural Network(ANN) and GIS (인공신경망기법과 GIS를 이용한 제주도 산사태 취약성분석)

  • Quan, He-Chun;Lee, Byung-Gul;Cho, Eun-Il
    • Journal of Environmental Science International
    • /
    • v.17 no.6
    • /
    • pp.679-687
    • /
    • 2008
  • In this study, we implemented landslide distribution of Jeju Island using ANN and GIS, respectively. To do this, we first get the counter line from 1:2,5000 digital map and use this counter line to make the DEM. for the evaluate the land slide susceptibility. Next, we abstracted slop map and aspect map from the DEM and get the land use map using ISODATA classification method from Landsat 7 images. In the computation processes of landslide analysis, we make the class to the soil map, tree diameter map, Isohyet map, geological map and so on. Finally, we applied the ANN method to the landslide one and calculated its weighted values. GIS results can be calculated by using Acrview program and produced Jeju landslide susceptibility map by usign Weighted Overlay method. Based on our results, we found the relatively weak points of landslide ware concentrated to the top of Halla mountains.

Recognition of Passport MRZ Information Using Combined Neural Networks (결합 신경망을 이용한 여권 MRZ 정보 인식)

  • Kim, Jinho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.4
    • /
    • pp.149-157
    • /
    • 2019
  • In case of reading passport using a smart phone in contrast with a dedicated passport reading system, MRZ(Machine Readable Zone) character recognition can be hard when the character strokes were broken, touched or blurred according to the lighting condition, and the position and size of MRZ character lines were varied due to the camera distance and angle. In this paper, the effective recognition algorithm of the passport MRZ information using a combined neural network recognizer of CNN(Convolutional Neural Network) and ANN( Artificial Neural Network), is proposed under the various sized and skewed passport images. The MRZ line detection using connected component analysis algorithm and the skew correction using perspective transform algorithm are also designed in order to achieve effective character segmentation results. Each of the MRZ field recognition results is verified by using five check digits for deciding whether retrying the recognition process of passport MRZ information or not. After we implement the proposed recognition algorithm of passport MRZ information, the excellent recognition performance of the passport MRZ information was obtained in the experimental results for PC off-line mode and smart phone on-line mode.

A Study on Development of Sound Quality Index of a Refrigerator Based on Human Sensibility Engineering (인공지능망을 이용한 냉장고 정상 가동 운전 상태의 음질 인덱스 개발)

  • 구진회;김중래;이은영;이상권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.991-996
    • /
    • 2004
  • The international competition in refrigerator markets has continuously required the research for sound quality of a refrigerator to improve the quality of a life. In this paper, A new method for evaluation of the sound quality of a refrigerator is developed based on human sensibility engineering by using ANN(Artificial neural network). Finally it is applied to evaluate the sound qualify of refrigerator on the production line.

  • PDF

Flow Factor Prediction of Centrifugal Hydraulic Turbine for Sea Water Reverse Osmosis (SWRO)

  • Ma, Ying;Kadaj, Eric;Terrasi, Kevin
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.369-378
    • /
    • 2010
  • The creation of the hydraulic turbine flow factor map will undoubtedly benefit its design by decreasing both the design cycle time and product cost. In this paper, the geometry and flow variables, which effectively affect the flow factor, are proposed, analyzed and determined. These flow variables are further used to create the operating condition maps by using different model approaches categorized into Response Surface Method (RSM) and Artificial Neural Network (ANN). The accuracies of models created by different approaches are compared and the performances of model approaches are analyzed. The influences of chosen variables and the combination of Principle Component Analysis (PCA) and model approaches are also studied. The comparison results between predicted and actual flow factors suggest that two-hidden-layer Feed-forward Neural Network (FFNN), and one.hidden-layer FFNN with PCA has the best performance on forming this mapping, and are accurate sufficiently for hydraulic turbine design.

Classification of Acoustic Emission Signals for Fatigue Crack Opening and Closure by Artificial Neural Network Based on Principal Component Analysis (주성분 분석과 인공신경망을 이용한 피로균열 열림.닫힘 시 음향방출 신호분류)

  • Kim, Ki-Bok;Yoon, Dong-Jin;Jeong, Jung-Chae;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.5
    • /
    • pp.532-538
    • /
    • 2002
  • This study was performed to classify the fatigue crack opening and closure for three kinds of aluminum alloy using principal component analysis (PCA). Fatigue cycle loading test was conducted to acquire AE signals which come from different source mechanisms such as crack opening and closure, rubbing, fretting etc. To extract the significant feature from AE signal, correlation analysis was performed. Over 94% of the variance of AE parameters could accounted for the first two principal components. The results of the PCA on AE parameters showed that the first principal component was associated with the size of AE signals and the second principal component was associated with the shape of AE signals. An artificial neural network (ANN) an analysis was successfully used to classify AE signals into six classes. The ANN classifier based on PCA appeared to be a promising tool to classify AE signals for fatigue crack opening and closure.

Measurement of Fat Content in Potatochips by Near-infrared Spectroscopy (근적외선 분광 분석법에 의한 감자칩의 지방 함량 측정)

  • Bae, Young-Min;Cho, Seong-In;Chun, Jae-Geun
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.916-921
    • /
    • 1996
  • This study was conducted to measure fat contents of potatochips by near infrared spectroscopy (NIRS). Both potatochip powder and potatochips were used to find correlations between the absorbance at certain wavelengths find the fat contents. Based on the correlation analysis, linear regression models predicting the fat contents were developed to predict the fat contents. Artificial neural network (ANN) models were also developed. Predicted values were compared to the measured ones. The regression and the ANN model predicting the fat contents of potatochip powder had determination coefficients of 0.93 and 0.92, and standard errors of prediction (SEP) of 1.29% and 1.17%, respectively. The correlation analysis of potatochips showed that the determination coefficients were low. Therefore, the fat contents of not potatochips but potatochip powder could be measured by NIRS.

  • PDF

A Study on the Artificial Intelligence (AI) Training Data Quality: Fuzzy-set Qualitative Comparative Analysis (fsQCA) Approach (인공지능 학습용 데이터 품질에 대한 연구: 퍼지셋 질적비교분석)

  • Hyunmok Oh;Seoyoun Lee;Younghoon Chang
    • Information Systems Review
    • /
    • v.26 no.1
    • /
    • pp.19-56
    • /
    • 2024
  • This study is empirical research to enhance understanding of AI (artificial intelligence) training data project in South Korea. It primarily focuses on the various concerns regarding data quality from policy-executing institutions, data construction companies, and organizations utilizing AI training data to develop the most reliable algorithm for society. For academic contribution, this study suggests a theoretical foundation and research model for understanding AI training data quality and its antecedents, as well as the unique data and ethical aspects of AI. For this purpose, this study proposes a research model with important antecedents related to AI training data quality, such as data attribute factors, data building environmental factors, and data type-related factors. The study collects 393 sample data from actual practitioners and personnel from companies building artificial intelligence training data and companies developing artificial intelligence services. Data analysis was conducted through Fuzzy Set Qualitative Comparative Analysis (fsQCA) and Artificial Neural Network analysis (ANN), presenting academic and practical implications related to the quality of AI training data.