• Title/Summary/Keyword: Artificial Neural Network Analysis (ANN)

Search Result 371, Processing Time 0.037 seconds

ANN Sensorless Control of Induction Motor Dirve with AFLC (AFLC에 의한 유도전동기 드라이브의 ANN 센서리스 제어)

  • Chung, Dong-Hwa;Nam, Su-Myeong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.57-64
    • /
    • 2006
  • This paper is proposed for a artificial neural network(ANN) sensorless control based on the vector controlled induction motor drive, or proposes a adaptive fuzzy teaming control(AFLC). The fuzzy logic principle is first utilized for the control rotor speed. AFLC scheme is then proposed in which the adaptation mechanism is executed using fuzzy logic. Also, this paper is proposed for a method of the estimation of speed of induction motor using ANN Controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the analysis results to verify the effectiveness of the new method.

A New Technology for Optimization of Bead Height Using ANN

  • Kim, Ill-Soo;Son, Joon-Sik;Sung, Back-Sub;Lee, Chang-Woo;Cha, Yong-Hoon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.208-213
    • /
    • 2001
  • Objective of this paper is to develop a new approach involving the use of an Artificial Neural Network(ANN) and multiple regression methods in the prediction of process parameters on bead height for GMA welding process. Using a series of robotic are welding, multi-pass butt welds carried out in order to verify the performance of the neural network estimator and multiple regression methods. To verify the developed system, the design parameters of the neural network estimator are selected from an estimation error analysis. The experimental results show that the proposed models can predict the bead height with reasonable accuracy and guarantee the uniform weld quality.

  • PDF

A Study on Efficient Topography Classification of High Resolution Satelite Image (고해상도 위성영상의 효율적 지형분류기법 연구)

  • Lim, Hye-Young;Kim, Hwang-Soo;Choi, Joon-Seog;Song, Seung-Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.3 s.33
    • /
    • pp.33-40
    • /
    • 2005
  • The aim of remotely sensed data classification is to produce the best accuracy map of the earth surface assigning each pixel to its appropriate category of the real-world. The classification of satellite multi-spectral image data has become tool for generating ground cover map. Many classification methods exist. In this study, MLC(Maximum Likelihood Classification), ANN(Artificial neural network), SVM(Support Vector Machine), Naive Bayes classifier algorithms are compared using IKONOS image of the part of Dalsung Gun, Daegu area. Two preprocessing methods are performed-PCA(Principal component analysis), ICA(Independent Component Analysis). Boosting algorithms also performed. By the combination of appropriate feature selection pre-processing and classifier, the best results were obtained.

  • PDF

Predicting the Soluble Solids of Apples by Near Infrared Spectroscopy (II) - PLS and ANN Models - (근적외선을 이용한 사과의 당도예측 (II) - 부분최소제곱 및 인공신경회로망 모델 -)

  • ;W. R. Hruschka;J. A. Abbott;;B. S. Park
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.571-582
    • /
    • 1998
  • The PLS(Partial Least Square) and ANN(Artificial Neural Network) were introduced to develop the soluble solids content prediction model of apples which is followed by making a subsequent selection of photosensor. For the optimal PLS model, number of factors needed for spectrum analysis were increased until the convergence of prediction residual error sum of squares. Analysis has shown that even part of the overall wavelength with no pretreatment may turn out better performing. The best PLS model was found in the 800 to 1,100nm wavelength region without pretreatment of second derivation, having $R^2$=0.9236, bias= -0.0198bx, SEP=0.2527bx for unknown samples. On the other hand, for the ANN model the second derivation led to higher performance. On partial range of 800 to 1,100nm wavelengh region, prediction model with second derivation for unknown samples reached $R^2$=0.9177, SEP=0.2903bx in contrast to $R^2$=0.7507, SEP =0.4622bx without pretreatment.

  • PDF

Free vibration analysis of FGM plates using an optimization methodology combining artificial neural networks and third order shear deformation theory

  • Mohamed Janane Allah;Saad Hassouna;Rachid Aitbelale;Abdelaziz Timesli
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.633-643
    • /
    • 2023
  • In this study, the natural frequencies of Functional Graded Materials (FGM) plates are predicted using Artificial Neural Network (ANN). A model based on Third-order Shear Deformation Theory (TSDT) and FEM is used to train the ANN model. Different training methods are tested to simulate input and output dependency. As this is a parametric model, several architectures and optimization algorithms were tested. The proposed model allows us to minimize the CPU time to evaluate candidate material properties for FGM plate material selection and demonstrate their influence on dynamic behavior. Consequently, the time required for the FGM design process (candidate materials for material selection) and the geometric optimization of the FGM structure would remain reasonable. The ANN model can help industries to produce FGM plates with good mechanical properties of the selected materials. I addition, this model can be used to directly predict vibration behavior by testing a large number of FGM plates, representing all possible combinations of metals and ceramics in today's industry, without having to solve any eigenvalue problems.

Sound Based Machine Fault Diagnosis System Using Pattern Recognition Techniques

  • Vununu, Caleb;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.134-143
    • /
    • 2017
  • Machine fault diagnosis recovers all the studies that aim to detect automatically faults or damages on machines. Generally, it is very difficult to diagnose a machine fault by conventional methods based on mathematical models because of the complexity of the real world systems and the obvious existence of nonlinear factors. This study develops an automatic machine fault diagnosis system that uses pattern recognition techniques such as principal component analysis (PCA) and artificial neural networks (ANN). The sounds emitted by the operating machine, a drill in this case, are obtained and analyzed for the different operating conditions. The specific machine conditions considered in this research are the undamaged drill and the defected drill with wear. Principal component analysis is first used to reduce the dimensionality of the original sound data. The first principal components are then used as the inputs of a neural network based classifier to separate normal and defected drill sound data. The results show that the proposed PCA-ANN method can be used for the sounds based automated diagnosis system.

Vehicle Load Analysis using Bridge-Weigh-in-Motion System in a Cable Stayed Bridge (BWIM 시스템을 사용한 사장교의 차량하중 분석)

  • Park, Min-Seok;Lee, Jung-Whee;Kim, Sung-Kon;Jo, Byung-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.1-8
    • /
    • 2006
  • This paper describes the procedures developing the algorithm for analyzing signals acquired from the Bridge Weigh-in-Motion (BWIM) system installed in Seohae Bridge as a part of the bridge monitoring system. Through the analysis procedure, information about heavy traffics such as weight, speed, and number of axles are attempted to be extracted from time domain strain data of the BWIM system. One of numerous pattern recognition techniques, artificial neural network (ANN) is employed since it can effectively include dynamic effects, bridge-vehicle interaction, etc. A number of vehicle running experiments with sufficient load cases are executed to acquire training and/or test set of ANN. Extracted traffic information can be utilized for developing quantitative database of loading effect. Also, it can contribute to estimate fatigue lift or current health condition, and design truck can be revised based on the database reflecting recent trend of traffic.

Heterogeneous Sensor Data Analysis Using Efficient Adaptive Artificial Neural Network on FPGA Based Edge Gateway

  • Gaikwad, Nikhil B.;Tiwari, Varun;Keskar, Avinash;Shivaprakash, NC
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4865-4885
    • /
    • 2019
  • We propose a FPGA based design that performs real-time power-efficient analysis of heterogeneous sensor data using adaptive ANN on edge gateway of smart military wearables. In this work, four independent ANN classifiers are developed with optimum topologies. Out of which human activity, BP and toxic gas classifier are multiclass and ECG classifier is binary. These classifiers are later integrated into a single adaptive ANN hardware with a select line(s) that switches the hardware architecture as per the sensor type. Five versions of adaptive ANN with different precisions have been synthesized into IP cores. These IP cores are implemented and tested on Xilinx Artix-7 FPGA using Microblaze test system and LabVIEW based sensor simulators. The hardware analysis shows that the adaptive ANN even with 8-bit precision is the most efficient IP core in terms of hardware resource utilization and power consumption without compromising much on classification accuracy. This IP core requires only 31 microseconds for classification by consuming only 12 milliwatts of power. The proposed adaptive ANN design saves 61% to 97% of different FPGA resources and 44% of power as compared with the independent implementations. In addition, 96.87% to 98.75% of data throughput reduction is achieved by this edge gateway.

Predicting blast-induced ground vibrations at limestone quarry from artificial neural network optimized by randomized and grid search cross-validation, and comparative analyses with blast vibration predictor models

  • Salman Ihsan;Shahab Saqib;Hafiz Muhammad Awais Rashid;Fawad S. Niazi;Mohsin Usman Qureshi
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.121-133
    • /
    • 2023
  • The demand for cement and limestone crushed materials has increased many folds due to the tremendous increase in construction activities in Pakistan during the past few decades. The number of cement production industries has increased correspondingly, and so the rock-blasting operations at the limestone quarry sites. However, the safety procedures warranted at these sites for the blast-induced ground vibrations (BIGV) have not been adequately developed and/or implemented. Proper prediction and monitoring of BIGV are necessary to ensure the safety of structures in the vicinity of these quarry sites. In this paper, an attempt has been made to predict BIGV using artificial neural network (ANN) at three selected limestone quarries of Pakistan. The ANN has been developed in Python using Keras with sequential model and dense layers. The hyper parameters and neurons in each of the activation layers has been optimized using randomized and grid search method. The input parameters for the model include distance, a maximum charge per delay (MCPD), depth of hole, burden, spacing, and number of blast holes, whereas, peak particle velocity (PPV) is taken as the only output parameter. A total of 110 blast vibrations datasets were recorded from three different limestone quarries. The dataset has been divided into 85% for neural network training, and 15% for testing of the network. A five-layer ANN is trained with Rectified Linear Unit (ReLU) activation function, Adam optimization algorithm with a learning rate of 0.001, and batch size of 32 with the topology of 6-32-32-256-1. The blast datasets were utilized to compare the performance of ANN, multivariate regression analysis (MVRA), and empirical predictors. The performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error (RMSE)for predicted and measured PPV. To determine the relative influence of each parameter on the PPV, sensitivity analyses were performed for all input parameters. The analyses reveal that ANN performs superior than MVRA and other empirical predictors, andthat83% PPV is affected by distance and MCPD while hole depth, number of blast holes, burden and spacing contribute for the remaining 17%. This research provides valuable insights into improving safety measures and ensuring the structural integrity of buildings near limestone quarry sites.

Application of artificial neural networks for dynamic analysis of building frames

  • Joshi, Shardul G.;Londhe, Shreenivas N.;Kwatra, Naveen
    • Computers and Concrete
    • /
    • v.13 no.6
    • /
    • pp.765-780
    • /
    • 2014
  • Many building codes use the empirical equation to determine fundamental period of vibration where in effect of length, width and the stiffness of the building is not explicitly accounted for. In the present study, ANN models are developed in three categories, varying the number of input parameters in each category. Input parameters are chosen to represent mass, stiffness and geometry of the buildings indirectly. Total numbers of 206 buildings are analyzed out of which, data set of 142 buildings is used to develop these models. It is demonstrated through developed ANN models that geometry of the building and the sizes of the columns are significant parameters in the dynamic analysis of building frames. The testing dataset of these three models is used to obtain the empirical relationship between the height of the building and fundamental period of vibration and compared with the similar equations proposed by other researchers. Experiments are conducted on Mild Steel frames using uniaxial shake table. It is seen that the values obtained through the ANN models are close to the experimental values. The validity of ANN technique is verified by experimental values.