• Title/Summary/Keyword: Artificial Intelligence (AI)

Search Result 2,070, Processing Time 0.024 seconds

Performance Improvement of Facial Gesture-based User Interface Using MediaPipe Face Mesh (MediaPipe Face Mesh를 이용한 얼굴 제스처 기반의 사용자 인터페이스의 성능 개선)

  • Jinwang Mok;Noyoon Kwak
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.125-134
    • /
    • 2023
  • The purpose of this paper is to propose a method to improve the performance of the previous research is characterized by recognizing facial gestures from the 3D coordinates of seven landmarks selected from the MediaPipe Face Mesh model, generating corresponding user events, and executing corresponding commands. The proposed method applied adaptive moving average processing to the cursor positions in the process to stabilize the cursor by alleviating microtremor, and improved performance by blocking temporary opening/closing discrepancies between both eyes when opening and closing both eyes simultaneously. As a result of the usability evaluation of the proposed facial gesture interface, it was confirmed that the average recognition rate of facial gestures was increased to 98.7% compared to 95.8% in the previous research.

Study on the Performance Improvement of Marine Engine Generator Exciter Control using Neural Network Controller (신경망 회로 제어기를 이용한 선박 엔진 발전기의 여자기 제어 성능 개선에 관한 연구)

  • HeeMoon Kim;JongSu Kim;SeongWan Kim;HyeonMin Jeon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.659-665
    • /
    • 2023
  • The exciter of a ship generator adjusts the magnetic flux through excitation current control to maintain the output terminal voltage constant. The voltage controller inside the exciter typically uses a proportional integral control method. however, the response characteristics determined by the gain and time constant produce unwanted output owing to an inappropriate setting value that can reduce the quality and stability of power within the ship. In this study, a neural network circuit is learned using stable input/output data that can be obtained through the AC4A type exciter model provided by IEEE, and the simulation is performed by replacing the existing proportional integral control type voltage controller with the learned neural network circuit controller. Consequently, overshooting was improved by up to 9.63% compared with that of the previous model, and excellence in stable response characteristics was confirmed.

Exploring Near-Future Potential Extreme Events(X-Events) in the Field of Science and Technology -With a Focus on Government Emergency Planning Officers FGI Results -

  • Sang-Keun Cho;Jong-Hoon Kim;Ki-Woon Kim;In-Chan Kim;Myung-Sook Hong;Jun-Chul Song;Sang-Hyuk Park
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.310-316
    • /
    • 2023
  • This study aims to predict uncertain future scenarios that may unfold in South Korea in the near future, utilizing the theory of extreme events(X-events). A group of 32 experts, consisting of government emergency planning officers, was selected as the focus group to achieve this objective. Using the Focus Group Interview (FGI) technique, opinions were gathered from this focus group regarding potential X-events that may occur within the advanced science and technology domains over the next 10 years. The analysis of these opinions revealed that government emergency planning officers regarded the "Obsolescence of current technology and systems," particularly in the context of cyber network paralysis as the most plausible X-event within science and technology. They also put forth challenging and intricate opinions, including the emergence of new weapon systems and ethical concerns associated with artificial intelligence (AI). Given that X-events are more likely to emerge in unanticipated areas rather than those that are widely predicted, the results obtained from this study carry significant importance. However, it's important to note that this study is grounded in a limited group of experts, highlighting the necessity for subsequent research involving a more extensive group of experts. This research seeks to stimulate studies on extreme events at a national level and contribute to the preparation for future X-event predictions and strategies for addressing them.

Intelligent Bridge Safety Prediction Edge System (지능형 교량 안전성 예측 엣지 시스템)

  • Jinhyo Park;Taejin Lee;Yong-Geun Hong;Joosang Youn
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.12
    • /
    • pp.357-362
    • /
    • 2023
  • Bridges are important transportation infrastructure, but they are subject to damage and cracking due to various environmental factors and constant traffic loads, which accelerate their aging. With many bridges now older than their original construction, there is a need for systems to ensure safety and diagnose deterioration. Bridges are already utilizing structural health monitoring (SHM) technology to monitor the condition of bridges in real time or periodically. Along with this technology, the development of intelligent bridge monitoring technology utilizing artificial intelligence and Internet of Things technology is underway. In this paper, we study an edge system technique for predicting bridge safety using fast Fourier transform and dimensionality reduction algorithm for maintenance of aging bridges. In particular, unlike previous studies, we investigate whether it is possible to form a dataset using sensor data collected from actual bridges and check the safety of bridges.

Framework Design for Malware Dataset Extraction Using Code Patches in a Hybrid Analysis Environment (코드패치 및 하이브리드 분석 환경을 활용한 악성코드 데이터셋 추출 프레임워크 설계)

  • Ki-Sang Choi;Sang-Hoon Choi;Ki-Woong Park
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.3
    • /
    • pp.403-416
    • /
    • 2024
  • Malware is being commercialized and sold on the black market, primarily driven by financial incentives. With the increasing demand driven by these sales, the scope of attacks via malware has expanded. In response, there has been a surge in research efforts leveraging artificial intelligence for detection and classification. However, adversaries are integrating various anti-analysis techniques into their malware to thwart analytical efforts. In this study, we introduce the "Malware Analysis with Dynamic Extraction (MADE)" framework, a hybrid binary analysis tool devised to procure datasets from advanced malware incorporating Anti-Analysis techniques. The MADE framework has the proficiency to autonomously execute dynamic analysis on binaries, encompassing those laden with Anti-VM and Anti-Debugging defenses. Experimental results substantiate that the MADE framework can effectively circumvent over 90% of diverse malware implementations using Anti-Analysis techniques and can adeptly extract relevant datasets.

A Study on the Energy Platform to Reduce Carbon Emissions (탄소배출 저감을 위한 에너지 플랫폼 연구)

  • Beom-seok Cha;Hyung-Jin Moon;Woojin Wi;Gab-Sang Ryu
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.43-50
    • /
    • 2024
  • This manuscript proposes an artificial intelligence-based(AI) energy platform system that efficiently use existing energy than creating new energy than creating new energy sources. To this end, it collects public information data portal and statistics data portal and data emissions, including energy usage and greenhouse gas emissions, including energy consumption and greenhouse gas emissions.In addition, it provides strong security and personal information protection functions to overcome the limit of existing energy platform. Through the built energy platform, improving power supply and user convenience of users and users to contribute to global warming issues.In this paper, the contents to implement the contents of the system, and improvement direction from the future completion and improvement direction.

Systematic Research on Privacy-Preserving Distributed Machine Learning (프라이버시를 보호하는 분산 기계 학습 연구 동향)

  • Min Seob Lee;Young Ah Shin;Ji Young Chun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.76-90
    • /
    • 2024
  • Although artificial intelligence (AI) can be utilized in various domains such as smart city, healthcare, it is limited due to concerns about the exposure of personal and sensitive information. In response, the concept of distributed machine learning has emerged, wherein learning occurs locally before training a global model, mitigating the concentration of data on a central server. However, overall learning phase in a collaborative way among multiple participants poses threats to data privacy. In this paper, we systematically analyzes recent trends in privacy protection within the realm of distributed machine learning, considering factors such as the presence of a central server, distribution environment of the training datasets, and performance variations among participants. In particular, we focus on key distributed machine learning techniques, including horizontal federated learning, vertical federated learning, and swarm learning. We examine privacy protection mechanisms within these techniques and explores potential directions for future research.

A method for metadata extraction from a collection of records using Named Entity Recognition in Natural Language Processing (자연어 처리의 개체명 인식을 통한 기록집합체의 메타데이터 추출 방안)

  • Chiho Song
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.24 no.2
    • /
    • pp.65-88
    • /
    • 2024
  • This pilot study explores a method of extracting metadata values and descriptions from records using named entity recognition (NER), a technique in natural language processing (NLP), a subfield of artificial intelligence. The study focuses on handwritten records from the Guro Industrial Complex, produced during the 1960s and 1970s, comprising approximately 1,200 pages and 80,000 words. After the preprocessing process of the records, which included digitization, the study employed a publicly available language API based on Google's Bidirectional Encoder Representations from Transformers (BERT) language model to recognize entity names within the text. As a result, 173 names of people and 314 of organizations and institutions were extracted from the Guro Industrial Complex's past records. These extracted entities are expected to serve as direct search terms for accessing the contents of the records. Furthermore, the study identified challenges that arose when applying the theoretical methodology of NLP to real-world records consisting of semistructured text. It also presents potential solutions and implications to consider when addressing these issues.

Research on Metadata Schema for Data Exchange between Smart Housing Fire Service and Smart City Integration Platform (스마트하우징 화재 서비스의 스마트시티 플랫폼 연계 데이터 교환용 메타데이터 스키마 연구)

  • Dae-Kug Lee;Dae-Gyu Lee;Hyun-Kook Kahng;Choong-Ho Cho
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.113-122
    • /
    • 2024
  • Recently, cutting-edge ICT technologies such as artificial intelligence, blockchain, edge computing, and the Internet of Things have been applied in various fields to create new services and a new digital era. Along with these technological developments, various policies are being implemented in Korea to transform the country from a "Smart City" to a "Platform City". We can create new services and values by linking with the Smart City Integrated Platform and Smart Housing Platform. This paper defines a linkage scenario between a Smart Housing Platform and the Smart 119 Emergency Dispatch Support Service, one of the Smart City Safety Nets. We propose a data transmission protocol and a metadata schema for data exchange between the Smart Housing Platform and the Smart City Integrated Platform to provide the Smart 119 Emergency Dispatch Support Service.

Short-and Mid-term Power Consumption Forecasting using Prophet and GRU (Prophet와 GRU을 이용하여 단중기 전력소비량 예측)

  • Nam Rye Son;Eun Ju Kang
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.18-26
    • /
    • 2023
  • The building energy management system (BEMS), a system designed to efficiently manage energy production and consumption, aims to address the variable nature of power consumption within buildings due to their physical characteristics, necessitating stable power supply. In this context, accurate prediction of building energy consumption becomes crucial for ensuring reliable power delivery. Recent research has explored various approaches, including time series analysis, statistical analysis, and artificial intelligence, to predict power consumption. This paper analyzes the strengths and weaknesses of the Prophet model, choosing to utilize its advantages such as growth, seasonality, and holiday patterns, while also addressing its limitations related to data complexity and external variables like climatic data. To overcome these challenges, the paper proposes an algorithm that combines the Prophet model's strengths with the gated recurrent unit (GRU) to forecast short-term (2 days) and medium-term (7 days, 15 days, 30 days) building energy consumption. Experimental results demonstrate the superior performance of the proposed approach compared to conventional GRU and Prophet models.