• Title/Summary/Keyword: Artificial Induction

Search Result 235, Processing Time 0.031 seconds

Factors Affecting Appressorium Formation in the Rice Blast Fungus Magnaporthe grisea (벼 도열병균의 부차기 형성에 미치는 요인 분석)

  • 이승철;강신호;이용환
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.413-417
    • /
    • 1998
  • Magnaporthe grisea, the casual agent of rice blast, requires formation of an appressorium, a dome-shaped and well melanized infection structure, to penetrate its host. Environmental cues that induce appressorium formation include hydrophobicity and hardness of contact surface and chemicals from its host. Artificial surfaces are widely used to induce appressorium formation, but frequencies of appressorium induction are not always consistent. To understand variable induction of appressorium formation in M. grisea, several factors were tested on GelBond. High levels of appressorium formation were induced over a wide range of temperature (20~3$0^{\circ}C$) and pH (4~7). spore age up to 3-week-old did not significantly affect appressorium formation, but only a few apressoria on GelBond. However, adenosine specifically inhibited appressorium formation. Adenosine inhibition of appressorium formation was restored by exogenous addition of cAMP. Germ tube tips of M. grisea maintained the ability to differentiate appressoria by chemical inducers on GelBond at least up to 16 h after conidia germination. These results suggest that environmental factors have little effect on the variable induction of appressorium formation on the artificial surface in M. grisea.

  • PDF

Robust DTC Control of Doubly-Fed Induction Machines Based on Input-Output Feedback Linearization Using Recurrent Neural Networks

  • Payam, Amir Farrokh;Hashemnia, Mohammad Naser;Fai, Jawad
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.719-725
    • /
    • 2011
  • This paper describes a novel Direct Torque Control (DTC) method for adjustable speed Doubly-Fed Induction Machine (DFIM) drives which is supplied by a two-level Space Vector Modulation (SVM) voltage source inverter (DTC-SVM) in the rotor circuit. The inverter reference voltage vector is obtained by using input-output feedback linearization control and a DFIM model in the stator a-b axes reference frame with stator currents and rotor fluxes as state variables. Moreover, to make this nonlinear controller stable and robust to most varying electrical parameter uncertainties, a two layer recurrent Artificial Neural Network (ANN) is used to estimate a certain function which shows the machine lumped uncertainty. The overall system stability is proved by the Lyapunov theorem. It is shown that the torque and flux tracking errors as well as the updated weights of the ANN are uniformly ultimately bounded. Finally, effectiveness of the proposed control approach is shown by computer simulation results.

Identification of Speed of Induction Motor Drive using Artificial Neural Networks (인공 신경회로망을 이용한 유도전동기 드라이브의 속도 동정)

  • Lee, Young-Sil;Lee, Jung-Chul;Lee, Hong-Gyun;Jung, Tack-Gi;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.203-205
    • /
    • 2003
  • This paper is proposed a newly developed approach to identify the mechanical speed of an induction motor based on artificial neural networks technique. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

  • PDF

Development of Induction machine Diagnosis System using LabVIEW and PDA (LabVIEW 기반의 PDA를 이용한 기계 진단 시스템의 개발)

  • Son, Jong-Duk;Yang, Bo-Suk;Han, Tian;Ha, Jong-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.945-948
    • /
    • 2005
  • Mobile computing devices are becoming increasingly prevalent in a huge range of physical area, offering a considerable market opportunity. The focus of this paper is on the development of a platform of fault diagnosis system integrating with personal digital assistant (PDA). An improvement of induction machine rotor fault diagnosis based on AI algorithms approach is presented. This network system consists of two parts; condition monitoring and fault diagnosis by using Artificial Intelligence algorithm. LabVIEW allows easy interaction between acquisition instrumentation and operators. Also it can easily integrate AI algorithm. This paper presents a development environment fur intelligent application for PDA. The introduced configuration is a LabVIEW application in PDA module toolkit which is LabVIEW software.

  • PDF

Artificial Neural Network, Induction Rules, and IRANN to Forecast Purchasers for a Specific Product (제품별 구매고객 예측을 위한 인공신경망, 귀납규칙 및 IRANN모형)

  • Jung Su-Mi;Lee Gun-Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.4
    • /
    • pp.117-130
    • /
    • 2005
  • It is effective and desirable for a proper customer relationship management or marketing to focus on the specific customers rather than a number of non specific customers. This study forecasts the prospective purchasers with high probability to purchase a specific product. Artificial Neural Network( ANN) can classily the characteristics of the prospective purchasers but ANN has a limitation in comprehending of outputs. ANN is integrated into IRANN with IR of decision tree program C5.0 to comprehend and analyze the outputs of ANN. We compare and analyze the accuracy of ANN, IR, and IRANN each other.

Fault Detection and Diagnosis System for a Three-Phase Inverter Using a DWT-Based Artificial Neural Network

  • Rohan, Ali;Kim, Sung Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.238-245
    • /
    • 2016
  • Inverters are considered the basic building blocks of industrial electrical drive systems that are widely used for various applications; however, the failure of electronic switches mainly affects the constancy of these inverters. For safe and reliable operation of an electrical drive system, faults in power electronic switches must be detected by an efficient system that is capable of identifying the type of faults. In this paper, an open switch fault identification technique for a three-phase inverter is presented. Single, double, and triple switching faults can be diagnosed using this method. The detection mechanism is based on stator current analysis. Discrete wavelet transform (DWT) using Daubechies is performed on the Clarke transformed (-) stator current and features are extracted from the wavelets. An artificial neural network is then used for the detection and identification of faults. To prove the feasibility of this method, a Simulink model of the DWT-based feature extraction scheme using a neural network for the proposed fault detection system in a three-phase inverter with an induction motor is briefly discussed with simulation results. The simulation results show that the designed system can detect faults quite efficiently, with the ability to differentiate between single and multiple switching faults.

High Performance Controller of Induction Motor with Hybrid Artificial Intelligent Control (하이브리드 인공지능 제어기에 의한 유도전동기의 고성능 제어)

  • Park, Byung-Sang;Choi, Jung-Sik;Ko, Jae-Sub;Lee, Jung-Ho;Kim, Jong-Kwan;Park, Ki-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.737-738
    • /
    • 2006
  • This paper is proposed hybrid artificial intelligent controller for high performance of induction motor drive. The design of this algorithm based on fuzzy-neural network controller that is implemented using fuzzy control and neural network. The control performance of the hybrid artificial intelligent controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

  • PDF

Load variation Compensated Neural Network Speed Controller for Induction Motor Drives (부하변동을 보상한 유도전동기 신경망 속도 제어기)

  • Oh, Won-Seok;Cho, Kyu-Min;Kim, Hee-Jun;Hyun, Sin-Tae;Kim, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1137-1139
    • /
    • 2002
  • In this paper, recurrent artificial neural network (RNN) based self tuning speed controller is proposed for the high performance drives of induction motor. RNN provides a nonlinear modeling of motor drive system and could give the information of the load variation, system noise and parameter variation of induction motor to the controller through the on-line estimated weights of corresponding RNN. Thus, proposed self tuning controller can change gains of the controller according to system conditions. The gain is composed with the weights of RNN. For the on-line estimation of the weights of RNN, extended kalman filter (EKF) algorithm is used. Self tuning controller that is adequate for the speed control of induction motor is designed. The availability of the proposed controller is verified through the MATLAB simulation with the comparison of conventional PI controller.

  • PDF

Induction Machine Fault Detection Using Generalized Feed Forward Neural Network

  • Ghate, V.N.;Dudul, S.V.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.389-395
    • /
    • 2009
  • Industrial motors are subject to incipient faults which, if undetected, can lead to motor failure. The necessity of incipient fault detection can be justified by safety and economical reasons. The technology of artificial neural networks has been successfully used to solve the motor incipient fault detection problem. This paper develops inexpensive, reliable, and noninvasive NN based incipient fault detection scheme for small and medium sized induction motors. Detailed design procedure for achieving the optimal NN model and Principal Component Analysis for dimensionality reduction is proposed. Overall thirteen statistical parameters are used as feature space to achieve the desired classification. GFFD NN model is designed and verified for optimal performance in fault identification on experimental data set of custom designed 2 HP, three phase 50 Hz induction motor.

Characteristics of the Voltages between the Communication Lines and Ground Induced by the Adjacent Artificial High-Voltage or Current ELF Source

  • Lee, Sang-Mu;Choi, Mun-Hwan;Cho, Pyung-Dong;Eun, Chang-Soo;Gimm, Yoon-Myoung
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.4
    • /
    • pp.175-181
    • /
    • 2009
  • The measurements were performed to verify experimentally that the voltage arising on a telecommunication line by a power line is due to the induction phenomena because there has been an opinion that the arising voltage on a telecommunication line is not by induction, but by other causality. The voltage appeared on the telecommunication line by way of an electric field or magnetic field generated by the source apparatus that had been artificially made to provide intentional constant high-voltage or current in ELF, that is, 60 Hz as an emulated commercial power.