• Title/Summary/Keyword: Artificial Bee Colony

Search Result 66, Processing Time 0.022 seconds

A hybrid algorithm for classifying rock joints based on improved artificial bee colony and fuzzy C-means clustering algorithm

  • Ji, Duofa;Lei, Weidong;Chen, Wenqin
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.353-364
    • /
    • 2022
  • This study presents a hybrid algorithm for classifying the rock joints, where the improved artificial bee colony (IABC) and the fuzzy C-means (FCM) clustering algorithms are incorporated to take advantage of the artificial bee colony (ABC) algorithm by tuning the FCM clustering algorithm to obtain the more reasonable and stable result. A coefficient is proposed to reduce the amount of blind random searches and speed up convergence, thus achieving the goals of optimizing and improving the ABC algorithm. The results from the IABC algorithm are used as initial parameters in FCM to avoid falling to the local optimum in the local search, thus obtaining stable classifying results. Two validity indices are adopted to verify the rationality and practicability of the IABC-FCM algorithm in classifying the rock joints, and the optimal amount of joint sets is obtained based on the two validity indices. Two illustrative examples, i.e., the simulated rock joints data and the field-survey rock joints data, are used in the verification to check the feasibility and practicability in rock engineering for the proposed algorithm. The results show that the IABC-FCM algorithm could be applicable in classifying the rock joint sets.

On Modification and Application of the Artificial Bee Colony Algorithm

  • Ye, Zhanxiang;Zhu, Min;Wang, Jin
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.448-454
    • /
    • 2018
  • Artificial bee colony (ABC) algorithm has attracted significant interests recently for solving the multivariate optimization problem. However, it still faces insufficiency of slow convergence speed and poor local search ability. Therefore, in this paper, a modified ABC algorithm with bees' number reallocation and new search equation is proposed to tackle this drawback. In particular, to enhance solution accuracy, more bees in the population are assigned to execute local searches around food sources. Moreover, elite vectors are adopted to guide the bees, with which the algorithm could converge to the potential global optimal position rapidly. A series of classical benchmark functions for frequency-modulated sound waves are adopted to validate the performance of the modified ABC algorithm. Experimental results are provided to show the significant performance improvement of our proposed algorithm over the traditional version.

A modified multi-objective elitist-artificial bee colony algorithm for optimization of smart FML panels

  • Ghashochi-Bargha, H.;Sadr, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1209-1224
    • /
    • 2014
  • In Current paper, the voltages of patches optimization are carried out for minimizing the power consumption of piezoelectric patches and maximum vertical displacement of symmetrically FML panels using the modified multi-objective Elitist-Artificial Bee Colony (E-ABC) algorithm. The voltages of patches, panel length/width ratios, ply angles, thickness of metal sheets and edge conditions are chosen as design variables. The classical laminated plate theory (CLPT) is considered to model the transient response of the panel, and numerical results are obtained by the finite element method. The performance of the E-ABC is also compared with the PSO algorithm and shows the good efficiency of the E-ABC algorithm. To check the validity, the transient responses of isotropic and orthotropic panels are compared with those available in the literature and show a good agreement.

Optimum design of RC shallow tunnels in earthquake zones using artificial bee colony and genetic algorithms

  • Ozturk, Hasan Tahsin;Turkeli, Erdem;Durmus, Ahmet
    • Computers and Concrete
    • /
    • v.17 no.4
    • /
    • pp.435-453
    • /
    • 2016
  • The main purpose of this study is to perform optimum cost design of cut and cover RC shallow tunnels using Artificial bee colony and genetic algorithms. For this purpose, mathematical expressions of objective function, design variables and constraints for the design of cut and cover RC shallow tunnels were determined. By using these expressions, optimum cost design of the Trabzon Kalekapisi junction underpass tunnel was carried out by using the cited algorithms. The results obtained from the algorithms were compared with the results obtained from traditional design and remarkable saving from the cost of the tunnel was achieved.

Buckling load optimization of laminated plates via artificial bee colony algorithm

  • Topal, Umut;Ozturk, Hasan Tahsin
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.755-765
    • /
    • 2014
  • In this present work, Artificial Bee Colony Algorithm (ABCA) is used to optimize the stacking sequences of simply supported antisymmetric laminated composite plates with criticial buckling load as the objective functions. The fibre orientations of the layers are selected as the optimization design variables with the aim to find the optimal laminated plates. In order to perform the optimization based on the ABCA, a special code is written in MATLAB software environment. Several numerical examples are presented to illustrate this optimization algorithm for different plate aspect ratios, number of layers and load ratios.

Railway Track Maintenance Scheduling using Artificial Bee Colony and Harmony Search

  • Kim, Ki-Dong;Kim, Sung-Soo;Nam, Duk-Hee;Jeong, Hanil
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.91-102
    • /
    • 2016
  • The objective of this paper is to propose a heuristic algorithm to optimize the railway track maintenance scheduling, a NP-hard problem, by reflecting conditions of the actual field more quickly and easily. We develop the mechanism based on Binary Artificial Bee Colony (BABC) and Binary Harmony Search (BHS), and verify their performance through simulation experiments. Our proposed BABC and BHS mechanisms were applied to problems composed of 30, 60, 100, and 200 operations for railway track maintenance scheduling to carry out experiments and analysis. On comparing it with the results solved by CPLEX, it is found that the mechanism could present an optimal solution within limited time by user.

Optimum design of geometrically non-linear steel frames using artificial bee colony algorithm

  • Degertekin, S.O.
    • Steel and Composite Structures
    • /
    • v.12 no.6
    • /
    • pp.505-522
    • /
    • 2012
  • An artificial bee colony (ABC) algorithm is developed for the optimum design of geometrically non-linear steel frames. The ABC is a new swarm intelligence method which simulates the intelligent foraging behaviour of honeybee swarm for solving the optimization problems. Minimum weight design of steel frames is aimed under the strength, displacement and size constraints. The geometric non-linearity of the frame members is taken into account in the optimum design algorithm. The performance of the ABC algorithm is tested on three steel frames taken from literature. The results obtained from the design examples demonstrate that the ABC algorithm could find better designs than other meta-heuristic optimization algorithms in shorter time.

Multi-objective Capacitor Allocations in Distribution Networks using Artificial Bee Colony Algorithm

  • El-Fergany, Attia;Abdelaziz, A.Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.441-451
    • /
    • 2014
  • This article addresses an efficient heuristic-based approach to assign static shunt capacitors along radial distribution networks using the artificial bee colony algorithm. The objective function is adapted to enhance the overall system static voltage stability index and to achieve maximum net yearly savings. Load variations have been considered to optimally scope the fixed and switched capacitors required. The numerical results are compared with those obtained using recent heuristic methods and show that the proposed approach is capable of generating high-grade solutions and validated viability.

Structural damage detection based on Chaotic Artificial Bee Colony algorithm

  • Xu, H.J.;Ding, Z.H.;Lu, Z.R.;Liu, J.K.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1223-1239
    • /
    • 2015
  • A method for structural damage identification based on Chaotic Artificial Bee Colony (CABC) algorithm is presented. ABC is a heuristic algorithm with simple structure, ease of implementation, good robustness but with slow convergence rate. To overcome the shortcoming, the tournament selection mechanism is chosen instead of the roulette mechanism and chaotic search mechanism is also introduced. Residuals of natural frequencies and modal assurance criteria (MAC) are used to establish the objective function, ABC and CABC are utilized to solve the optimization problem. Two numerical examples are studied to investigate the efficiency and correctness of the proposed method. The simulation results show that the CABC algorithm can identify the local damage better compared with ABC and other evolutionary algorithms, even with noise corruption.

Enhanced Hybrid XOR-based Artificial Bee Colony Using PSO Algorithm for Energy Efficient Binary Optimization

  • Baguda, Yakubu S.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.312-320
    • /
    • 2021
  • Increase in computational cost and exhaustive search can lead to more complexity and computational energy. Thus, there is need for effective and efficient scheme to reduce the complexity to achieve optimal energy utilization. This will improve the energy efficiency and enhance the proficiency in terms of the resources needed to achieve convergence. This paper primarily focuses on the development of hybrid swarm intelligence scheme for reducing the computational complexity in binary optimization. In order to reduce the complexity, both artificial bee colony (ABC) and particle swarm optimization (PSO) have been employed to effectively minimize the exhaustive search and increase convergence. First, a new approach using ABC and PSO has been proposed and developed to solve the binary optimization problem. Second, the scout for good quality food sources is accomplished through the deployment of PSO in order to optimally search and explore the best source. Extensive experimental simulations conducted have demonstrate that the proposed scheme outperforms the ABC approaches for reducing complexity and energy consumption in terms of convergence, search and error minimization performance measures.