• Title/Summary/Keyword: Articulated Vehicle

Search Result 54, Processing Time 0.019 seconds

Development of the Virtual Driving Environment for the AWS ECU Test Platform of the Bi-modal Tram (저상굴절 궤도차량의 AWS ECU 테스트 플랫폼을 위한 가상 주행환경 개발)

  • Choi, Seong-Hoon;Park, Tea-Won;Lee, Soo-Ho;Moon, Kyung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.283-290
    • /
    • 2007
  • A bi-modal tram has been developed to offer an advanced transportation service compared with existing vehicles. The All-Wheel-Steering system is applied to the bi-modal tram to satisfy the required steering performance because the bi-modal tram has extended length and articulated mechanism. An ECU for the steering system is essential to steer wheels on 2nd and 3rd axles by the specific AWS algorithm with the prescribed driving condition. The Hardware-In-the-Loop Simulation(HILS) system is planned for the purpose of evaluating the steering system of the bi-modal tram. There are kinematic links with the hydraulic actuator to steer wheels on each 2nd and 3rd axles and also same steering mechanism as the actual vehicle is in the HILS system. Controlling the movement of hydraulic actuator which reflects the lateral steering reaction force on each wheel is the key to realize the HILS system, but the reaction force is continuously changed according to various driving conditions. Therefore, the simulation through the multi-body dynamics model is used to obtain the required forces.

  • PDF

Durability Evaluation of Gangway Connections for the High Speed Railway Vehicles (고속철도차량 갱웨이 통로연결막의 내구성 평가)

  • Kang, Gil-Hyun;Woo, Chang-Su;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4796-4801
    • /
    • 2014
  • To increase the riding comfort and running stability of articulated type high speed railway vehicles(HSRV), it is important that the gangway connections for the passenger car satisfied fire safety, sound proof and durability under triaxial angular displacement (rolling/yawing/pitching) modes. On the other hand, a domestic test standard on the durability of the rubber components has not been determined. In this study, the fatigue life was predicted using the results of the nonlinear finite element analysis and the fatigue properties. Moreover, a fatigue rig test of the component was constructed to examine the durability.

An analysis on the railway vehicle system for the introduction of new transit systems (신교통시스템 도입을 위한 차량시스템에 관한 고찰)

  • Chung, Su-Young;An, Sung-Jin;Kim, Pyo-Jong
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.284-290
    • /
    • 2009
  • As the increased importance is placed on the new transit systems owing to the environmental pollution caused by the road traffic congestion, the policy for the introduction of the new transit systems as an alternative solution to ease the heavy burden of the construction expenses is being actively established. Since the explicit recognition of such transit systems and the review on the method of its adoption have been a pressing matter in the light of reducing the pending traffic congestion, the development of the rolling stock systems in modes of new transportation has been made in various ways taking into consideration the regional circumstances to alleviate traffic congestion, and offer a more efficient service with the application of their intrinsic characteristics. Such systems also have been developed as a mix of punctuality for railway systems operating on the runway and flexibility for buses. This paper, therefore, deals in more detail with 3 modes of systems such as low-floor articulated buses, GRT(Guided Rapid Transit) and tram cars, and studies the overseas cases of the operation of those systems involving both negative and positive aspects.

  • PDF

Facial fractures and associated injuries in high- versus low-energy trauma: all are not created equal

  • Hilaire, Cameron St.;Johnson, Arianne;Loseth, Caitlin;Alipour, Hamid;Faunce, Nick;Kaminski, Stephen;Sharma, Rohit
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.22.1-22.6
    • /
    • 2020
  • Introduction: Facial fractures (FFs) occur after high- and low-energy trauma; differences in associated injuries and outcomes have not been well articulated. Objective: To compare the epidemiology, management, and outcomes of patients suffering FFs from high-energy and low-energy mechanisms. Methods: We conducted a 6-year retrospective local trauma registry analysis of adults aged 18-55 years old that suffered a FF treated at the Santa Barbara Cottage Hospital. Fracture patterns, concomitant injuries, procedures, and outcomes were compared between patients that suffered a high-energy mechanism (HEM: motor vehicle crash, bicycle crash, auto versus pedestrian, falls from height > 20 feet) and those that suffered a low-energy mechanism (LEM: assault, ground-level falls) of injury. Results: FFs occurred in 123 patients, 25 from an HEM and 98 from an LEM. Rates of Le Fort (HEM 12% vs. LEM 3%, P = 0.10), mandible (HEM 20% vs. LEM 38%, P = 0.11), midface (HEM 84% vs. LEM 67%, P = 0.14), and upper face (HEM 24% vs. LEM 13%, P = 0.217) fractures did not significantly differ between the HEM and LEM groups, nor did facial operative rates (HEM 28% vs. LEM 40%, P = 0.36). FFs after an HEM event were associated with increased Injury Severity Scores (HEM 16.8 vs. LEM 7.5, P <0.001), ICU admittance (HEM 60% vs. LEM 13.3%, P <0.001), intracranial hemorrhage (ICH) (HEM 52% vs. LEM 15%, P <0.001), cervical spine fractures (HEM 12% vs. LEM 0%, P = 0.008), truncal/lower extremity injuries (HEM 60% vs. LEM 6%, P <0.001), neurosurgical procedures for the management of ICH (HEM 54% vs. LEM 36%, P = 0.003), and decreased Glasgow Coma Score on arrival (HEM 11.7 vs. LEM 14.2, P <0.001). Conclusion: FFs after HEM events were associated with severe and multifocal injuries. FFs after LEM events were associated with ICH, concussions, and cervical spine fractures. Mechanism-based screening strategies will allow for the appropriate detection and management of injuries that occur concomitant to FFs. Type of study: Retrospective cohort study. Level of evidence: Level III.