• Title/Summary/Keyword: Arteries

Search Result 1,242, Processing Time 0.018 seconds

Comparison of Left Ventricular Volume and Function between 46 Channel Multi-detector Computed Tomography (MDCT) and Echocardiography (16 채널 Multi-detector 컴퓨터 단층촬영과 심초음파를 이용한 좌심실 용적과 기능의 비교)

  • Park, Chan-Beom;Cho, Min-Seob;Moon, Mi-Hyoung;Cho, Eun-Ju;Lee, Bae-Young;Kim, Chi-Kyung;Jin, Ung
    • Journal of Chest Surgery
    • /
    • v.40 no.1 s.270
    • /
    • pp.45-51
    • /
    • 2007
  • Background: Although echocardiography is usually used for quantitative assessment of left ventricular function, the recently developed 16-slice multidetector computed tomography (MDCT) is not only capable of evaluating the coronary arteries but also left ventricular function. Therefore, the objective of our study was to compare the values of left ventricular function quantified by MDCT to those by echocardiography for evaluation of its regards to clinical applications. Material and Method: From 49 patients who underwent MDCT in our hospital from November 1, 2003 to January 31, 2005, we enrolled 20 patients who underwent echocardiography during the same period for this study. Left ventricular end-diastolic volume index (LVEDVI), left ventricular end-systolic volume index (LVESVI), stroke volume index (SVI), left ventricular mass index (LVMI), and ejection fraction (EF) were analyzed. Result: Average LVEDVI ($80.86{\pm}34.69mL$ for MDCT vs $60.23{\pm}29.06mL$ for Echocardiography, p<0.01), average LVESVI ($37.96{\pm}24.52mL$ for MDCT vs $25.68{\pm}16.57mL$ for Echocardiography, p<0.01), average SVI ($42.90{\pm}15.86mL$ for MDCT vs $34.54{\pm}17.94mL$ for Echocardiography, p<0.01), average LVMI ($72.14{\pm}25.35mL$ for MDCT vs $130.35{\pm}53.10mL$ for Echocardiography, p<0.01), and average EF ($55.63{\pm}12.91mL$ for MOCT vs $59.95{\pm}12.75ml$ for Echocardiography, p<0.05) showed significant difference between both groups. Average LVEDVI, average LVESVI, and average SVI were higher in MDCT, and average LVMI and average EF were higher in echocardiogram. Comparing correlation for each parameters between both groups, LVEDVI $(r^2=0.74,\;p<0.0001)$, LVESVI $(r^2=0.69,\;p<0.0001)$ and SVI $(r^2=0.55,\;p<0.0001)$ showed high relevance, LVMI $(r^2=0.84,\;p<0.0001)$ showed very high relevance, and $EF (r^2=0.45,\;p=0.0002)$ showed relatively high relevance. Conclusion: Quantitative assessment of left ventricular volume and function using 16-slice MDCT showed high relevance compared with echocardiography, therefore may be a feasible assessment method. However, because the average of each parameters showed significant difference, the absolute values between both studies may not be appropriate for clinical applications. Furthermore, considering the future development of MDCT, we expect to be able to easily evaluate the assessment of coronary artery stenosis along with left ventricular function in coronary artery disease patients.

Effect of Acute Ethanol Intoxication on the Pulmonary Compliance and Surfactant in Rats (급성(急性) Ethyl 알콜 중독(中毒) 흰쥐의 폐용압률(肺容壓率)과 폐포활성물질(肺胞活性物質)의 변화(變化))

  • Lee, Seung-Jung;Choo, Young-Eun
    • The Korean Journal of Physiology
    • /
    • v.15 no.1
    • /
    • pp.27-36
    • /
    • 1981
  • Relatively little has been done on the metabolic changes of the lung produced by the excessive alcohol ingestion to the point of the acute alcohol intoxication. In the present study, an effort was made to clarify the possible changes of the pulmonary surfactant system by the acute alcohol ingestion. The dynamic pulmonary compliance and the levels of protein and inorganic phosphorus (Pi) of both lung lavage and extract were chosen as the parameters of the pulmonary surfactant activities. The albino rats of both sexes were used, and 1.5 ml of 50% ethanol per 100 g body weight was given by oral intubation, and the experiment was performed at 1, 3, 6, 12, and 24 hours after the alcohol ingestion. The rat was sacrificed by cutting the carotid arteries, and blood sample for the determination of hematocrit(Hct) and the blood alcohol concentration was obtained. Both lungs were completely removed without dammage to the lung tissue, and the pulmonary compliance was measured by the changes of pressure-volume(P-V) curves by inflating or deflating the lung with air. Immediately after the P-V curves were recorded, the lung lavage was obtained by washing the lobes with 15ml of isotonic saline 3 times with a syringe. Next, total lungs were homogenized and filtered to obtain the lung extract. The protein and Pi levels were measured using the lung lavage and extract as the samples, and the lung/body weight ratio(L/B ratio) was also calculated. The results thus obtained were compared with the normal values and summarized as follows. The blood alcohol concentration reached the highest level of $0.71{\pm}0.02\;g\;%$ at 1 hr and gradually decreased until 24 hrs$(0.36{\pm}0.02\;g%)$ after the alcohol ingestion, but all the experimental groups showed significant increase comparing with the normal. The highest Hct value was obtained at 1hr$(64.86{\pm}2.45%)$ and significantly elevated value was continued throughout the experiment. The L/B ratio was significantly lowered from 3hrs until 24hrs after the alcohol ingestion but from 6 th hr on, a generally elevated value was observed with a significant value at 12 hrs and gradual recovery to the normal value at 24 hrs after the alcohol ingestion. The pulmonary compliance at inflation and deflation did not change appreciablly from the normal until 3 hrs after the alcohol ingestion but from 6 th hr on, a generally elevated value was observed with a significant value at 12 hrs and gradual recovery to the normal value at 24 hrs after the alcohol ingestion. The protein level of the lung lavage stowed a significantly increased value of $12.36{\pm}0.35\;mg/gm(3rd hr)$, $12.70{\pm}0.74\;mg/gm(12 th hr)$, and $12.65{\pm}0.88\;mg/gm(24 th hr)$, respectively, comparing with the normal value of $10.65{\pm}0.62\;mg/gm$, and the Pi level also showed a similar tendency of significant increase at 12th hr $(7.65{\pm}0.63\;{\mu}mol/gm)$ and 24 th hr$(6.70{\pm}0.36\;{\mu}mol/gm)$ comparing with the normal value of $5.32{\pm}0.20\;{\mu}mol/gm$. The protein level of the lung extract in the alcohol group was generally similar to the normal value with a slight decrease at 1st and 3 rd hr, tut the Pi level of the lung extract was generally increased in the alcohol group, and a significant increase was observed at 6 th hr$(17.77{\pm}1.54\;{\mu}mol/gm)$, 12 th hr$(13.92{\pm}0.78\;{\mu}mol/gm)$ and 24 th hr$(14.57{\pm}0.53\;{\mu}mol/gm)$ of the alcohol ingestion comparing with the normal value of $10.34{\pm}0.37\;{\mu}mol/gm$. From the above, it may be concluded that the acute alcohol intoxication produces the metabolic changes of the lungs by the increased surfactant activities and elevated pulmonary compliance.

  • PDF