• Title/Summary/Keyword: Artemetin

Search Result 6, Processing Time 0.017 seconds

Isolation and Identification Antifungal Compounds from Vitex trifolia L. (만형자(Vitex trifolia L.)로부터 항균활성물질의 분리 및 구조결정)

  • Park, Young-Sik;Hwang, Joo-Tae;Kim, Young-Shin;Kim, Jin-Cheol;Lim, Chi-Hwan
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.4
    • /
    • pp.267-272
    • /
    • 2012
  • Vitex trifolia L. is a full grown fruit of Vitex rotundifolia L. (Verbenaceae). It has been used for treating headache, dizziness, toothache and removal of fever as a traditional medicine in Korea. V. trifolia (500 g) were extracted three times with 80% aqueous MeOH at room temperature. The MeOH extract (38 g) was successively partitioned with n-hexane, EtOAc, n-BuOH and $H_2O$. Both n-hexane and EtOAc fractions showed more than 80% antifungal activity in vivo against several plant pathogens at 2000 ppm. Successive repeated silica gel, Sephadex LH-20, preparative TLC, and preparative HPLC of these fractions led to isolation of three compounds. Using mainly mass spectroscopy and nuclear magnatic resonance (NMR) spectroscopy, their chemical structures were determined as agnuside(1), chrysosplenol B(2), and artemetin(3). Compound 2 was isolated for the first time from V. trifolia. Study on in vitro and in vivo antifungal activities of the isolated compounds is in progress.

Phytochemical Analysis of Viticis Fructus (만형자의 성분분석)

  • Kang, Sam-Sik;Kim, Ju-Sun;Kim, Hae-Jung;Jung, Young-Ran;Shin, Seung-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.25 no.3
    • /
    • pp.214-220
    • /
    • 1994
  • From the Viticis Fructus n-hydrocarbons, ${\beta}-sitosterol$ $3-O-{\beta}-_D-glucoside$ and hesperidin along with the known polyoxygenated flavonoids such as vitexicarpin, artemetin and luteolin, and vanillic acid were isolated and identified by means of spectroscopic methods. HPLC analysis of the flavonoid components from the MeOH extract was established. Phytochemical analyses of the domestic plant sample and the imported ones were conducted and the flavonoid compositions of the domestic samples were greatly different from those of the imported ones.

  • PDF

Antiproliferative Effect of Extracts, Fractions and Compound from Vitex rotundifolia on Human Cancer Cells (순비기 나무(Vitex rotundifolia) 추출.분획물 및 화합물의 인체 암세포 증식억제 효과)

  • Kim, You-Ah;Lee, Jung-Im;Kim, Hae-Jin;Kong, Chang-Suk;Nam, Taek-Jeong;Seo, Young-Wan
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.4
    • /
    • pp.180-186
    • /
    • 2009
  • Whole plants of Vitex rotundifolia were extracted for 2 days with methylene chloride ($CH_2Cl_2$) followed by extraction of the residue for an additional 2 days. The same procedure was also applied using methanol (MeOH). The two crude extracts were combined and partitioned between $CH_2Cl_2$ and $H_2O$. The organic layer was further partitioned between n-hexane and 85% aq. MeOH, and the aqueous layer was also further fractionated with n-BuOH and $H_2O$, successively. From the 85% aq. MeOH fraction, one compound was isolated through the repeated HPLC. According to the results of physicochemical data including NMR and MS, the chemical structure of the compound was determined as artemetin (1). The antiproliferative effects of the crude extracts, fractions, and compound against HT1080, AGS, MCF-7 and HT-29 human cancer cells were compared with the control by using MTT assay. In the comparative analysis, the 85% aq. MeOH fraction exhibited the strongest antiproliferative effects on human cancer cell lines in a dose-dependent manner (p<0.05). In addition, exposure of compound 1 isolated from 85% aq. MeOH fraction led to strong antiproliferative effect in HT1080 cancer cell lines. These results suggest that the extracts and compound isolated from V. rotundifolia may be used as potential chemopreventive and chemotherapeutic agents.

Antioxidant Activity of Flavonoids Isolated from Vitex rotundifolia (순비기나무(Vitex rotundifolia)로부터 분리한 플라보노이드 성분의 항산화 활성)

  • Kim, You-Ah;Lee, Jung-Im;Hong, Joo-Wan;Jung, Myoung-Eun;Seo, Young-Wan
    • Ocean and Polar Research
    • /
    • v.33 no.3
    • /
    • pp.255-263
    • /
    • 2011
  • The aim of this investigation was to evaluate antioxidant activity of crude extracts from the halophyte Vitex rotundifolia, their solvent fractions, and isolated compounds (1-3). Antioxidant capacity was determined by measuring DPPH radical, and authentic $ONOO^-$ and $ONOO^-$ generated from 3- morpholinsydnonimine (SIN-1) in vitro as well as degree of occurrence of intracellular ROS, NO and GSH in mouse macrophage Raw 264.7 cells. From comparative analysis, MeOH extract, n-BuOH, and 85% aq. MeOH solvent fractions showed significant antioxidant effect in DPPH radical and $ONOO^-$ assay systems. Activity-guided purification of n-BuOH and 85% aq. MeOH fractions led to the isolation of flavonoids 1-3. Among them, compound 1 exhibited excellent antioxidant effect in all bioassay systems tested. On the other hand, compounds 2 and 3 revealed potent inhibitory effect against $ONOO^-$ generated from SIN-1, comparable with the positive control penicillamine.

Antioxidant Activity of Vitex rotundifolia Seeds and Phytochemical Analysis Using HPLC-PDA

  • Hyejin Cho;Hak-Dong Lee;Jae Min Chung;Sanghyun Lee
    • Natural Product Sciences
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • This study assessed in vitro antioxidant activity (ABTS+ and DPPH) of Vitex rotundifolia seeds collected from two different regions in Korea (Jungjang City and Sindu City). Three extraction methods using ethanol, methanol, and water were prepared separately and subjected to quantification by reverse-phase high-performance liquid chromatography-photodiode array (HPLC-PDA) analysis as well as antioxidant testing. Among them, the water-based extract exhibited superior activity in the ABTS+ compared with the ethanol- and methanol-based extracts, while the DPPH assay analysis, revealed that the methanol-based extract had very low antioxidant activity. The concentrations of vanillic acid (1), luteolin (2), vitexicarpin (3), and artemetin (4) were quantified using HPLC-PDA analysis. Vanillic acid (1) was identified as the main antioxidant in V. rotundifolia seeds. Combining the antioxidant activity and quantitative analysis results, the water-based extract was considered to have the highest antioxidant activity. Furthermore, vanillic acid (1) was detected in the leaves and stems of V. rotundifolia plants from different regions, indicating that this species has the potential for use in future antioxidant-applications.

A network pharmacology and molecular docking approach in the exploratory investigation of the biological mechanisms of lagundi (Vitex negundo L.) compounds against COVID-19

  • Robertson G. Rivera;Patrick Junard S. Regidor;Edwin C. Ruamero Jr;Eric John V. Allanigue;Melanie V. Salinas
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.4.1-4.18
    • /
    • 2023
  • Coronavirus disease 2019 (COVID-19) is an inflammatory and infectious disease caused by severe acute respiratory syndrome coronavirus 2 virus with a complex pathophysiology. While COVID-19 vaccines and boosters are available, treatment of the disease is primarily supportive and symptomatic. Several research have suggested the potential of herbal medicines as an adjunctive treatment for the disease. A popular herbal medicine approved in the Philippines for the treatment of acute respiratory disease is Vitex negundo L. In fact, the Department of Science and Technology of the Philippines has funded a clinical trial to establish its potential as an adjunctive treatment for COVID-19. Here, we utilized network pharmacology and molecular docking in determining pivotal targets of Vitex negundo compounds against COVID-19. The results showed that significant targets of Vitex negundo compounds in COVID-19 are CSB, SERPINE1, and PLG which code for cathepsin B, plasminogen activator inhibitor-1, and plasminogen, respectively. Molecular docking revealed that α-terpinyl acetate and geranyl acetate have good binding affinity in cathepsin B; 6,7,4-trimethoxyflavanone, 5,6,7,8,3',4',5'-heptamethoxyflavone, artemetin, demethylnobiletin, gardenin A, geranyl acetate in plasminogen; and 7,8,4-trimethoxyflavanone in plasminogen activator inhibitor-1. While the results are promising, these are bound to the limitations of computational methods and further experimentation are needed to completely establish the molecular mechanisms of Vitex negundo against COVID-19.