• Title/Summary/Keyword: Arsenic (V)

Search Result 157, Processing Time 0.03 seconds

The Fate and Factors Determining Arsenic Mobility of Arsenic in Soil-A Review

  • Lee, Kyo Suk;Shim, Ho Young;Lee, Dong Sung;Chung, Doug Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.73-80
    • /
    • 2015
  • Arsenic which is found in several different chemical forms and oxidation states and causes acute and chronic adverse health effects is a toxic trace element widely distributed in soils and aquifers from both geologic and anthropogenic sources. Arsenic which has a mysterious ability to change color, behavior, reactivity, and toxicity has diverse chemical behavior in the natural environment. Arsenic which has stronger ability to readily change oxidation state than nitrogen and phosphorus due to a consequence of the electronic configuration of its valence orbitals with partially filled states capable of both electron donation and acceptance although the electronegativity of arsenic is greater than that of nitrogen and similar to that of phosphorus. Arsenate (V) is the thermodynamically stable form of As under aerobic condition and interacts strongly with solid matrix. However, it has been known that adsorption and oxidation reactions of arsenite (III) which is more soluble and mobile than As(V) in soils are two important factors affecting the fate and transport of arsenic in the environment. That is, the movement of As in soils and aquifers is highly dependent on the adsorption-desorption reactions in the solid phase. This article, however, focuses primarily on understanding the fate and speciation of As in soils and what fate arsenic will have after it is incorporated into soils.

Stabilization of As (arsenic(V) or roxarsone) Contaminated Soils using Zerovalent Iron and Basic Oxygen Furnace Slag (영가철(Zerovalent Iron)과 제강슬래그를 이용한 비소(V) 및 록살슨(Roxarsone) 오염토양의 비소 안정화 효율 평가)

  • Lim, Jung-Eun;Kim, Kwon-Rae;Lee, Sang-Soo;Kwon, Oh-Kyung;Yang, Jae-E;Ok, Yong-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.631-638
    • /
    • 2010
  • The objective of this study was to evaluate the efficiency of zerovalent iron and basic oxygen furnace slag on arsenic stabilization in soils. For this, arsenic (V) contaminated soil and roxarsone contaminated soil were incubated after incorporation with zerovalent iron (ZVI) or basic oxygen furnace slage (BOFS) at four different levels (0%, 1%, 3%, and 5%) for 30 days and then the residual concentrations of arsenic were analysed following extraction with aqua reqia, 1N HCl and 0.01 M $CaCl_2$. The total concentration of arsenic was 2,285 mg/kg in the As(V) contaminated soil and 6.5 mg/kg in the roxarsone contaminated soil. 1 N HCl extractable arsenic concentration in the As(V) contaminated soil was initially 1,351 mg/kg and this was significantly declined by 713~1,034 mg/kg following incubation with ZVI while BOFS treatment showed no effect on the stabilization of inorganic arsenate except 5% treatment which showed around 100 mg/kg reduction in 1N HCl extractable arsenic. Similarly, in the roxarsone contaminated soil 1N HCl extractable concentration of arsenic was reduced from 3.13 mg/kg to 0.69 mg/kg with ZVI treatment increased from 1% to 5% while BOFS treatment did not lead to any statistically significant reduction. Available (0.01M $CaCl_2$ extractable) arsenic was initially 0.85 mg/kg in the As(V) contaminated soil and this declined by 0.79 mg/kg following incorporation with 5% ZVI, which accounted for more than 90% of the available As in the control. When As(V)-contaminated soil was treated with BOFS, the available arsenic was increased due to competing effect of the phosphate originated from BOFS with arsenate for the adsorption sites. For the roxarsone contaminated soil, the greater the treatment of ZVI or BOFS, the lower the available arsenic concentration although it was still higher than that of the control.

Measurement of diffusion Profiles of Boron and Arsenic in Silicon by Silicon Anodization Method (실리콘 양극산화 방법에 의한 실리콘내의 보론과 아세닉 확산분포의 측정)

  • 박형무;김충기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.1
    • /
    • pp.7-19
    • /
    • 1981
  • Anodization method is utilized in order to measure diffusion profiles of boron and arsenic in silicon. The solution used for silicon anodization is Ethylene glycol +KNO3(0.04N), The thickness of silicon which is consumed by a single 200V anodization is 460$\pm$40A regardless of wafer type. The profiles of boron and arsenic in silicon after predeposition process are investigated. The diffusion coefficients of both dopants depending on impurity concentration are extrated from these profiles. The base pull-in effect has been observed in prototype npn transistors with arsenic doped emitter.

  • PDF

Effect of Soil Organic Matter on Arsenic Adsorption in the Hematite-Water Interface: Chemical Speciation Modeling and Adsorption Mechanism (비소의 적철석 표면 흡착에 토양유기물이 미치는 영향: 화학종 모델링과 흡착 기작)

  • Ko, Il-Won;Kim, Ju-Yong;Kim, Gyeong-Ung;An, Ju-Seong;Davis, A. P.
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.23-31
    • /
    • 2005
  • This study was performed to investigate the effect of humic acid on the adsorption of arsenic onto hematite and its binding mechanism through the chemical speciation modeling in the binary system and the adsorption modeling in the ternary system. The complexation modeling of arsenic and humic acid was suitable for the binding model with the basis of the electrostatic repulsion and the effect of bridging metal. In comparison with the experimental adsorption data in the ternary system, the competitive adsorption model from the binary intrinsic equilibrium constants was consistent with the amount of arsenic adsorption. However, the additive rule showed the deviation of model in the opposite way of cationic heavy metals, because the reduced organic complexation of arsenic and the enhanced oxyanionic competition diminished the adsorption of arsenic. In terms of the reaction mechanism, the organic complex of arsenic, neutral As(III) and oxyanionic As(V) species were transported and adsorbed competitively to the hematite surface forming the inner-sphere complex in the presence of humic acid.

Effect of the Physicochemical Properties of Soil on the Arsenic Bioaccessibility (비소용출에 대한 토양의 물리화학적 특성 영향)

  • Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.731-737
    • /
    • 2006
  • Four well-characterized soils collected from A- and B-horizon in the Department of Energy Oak Ridge Reservation in USA, mainly distributed with Inceptisol(Inc) and Ultisol(Ult) soils, were used in this work. The bioaccessibility of arsenic as well as oxidation phenomena of As(III) was investigated with soils spiked with As(III) and As(V) using a physiologically based extraction test(PBET) at pH 1.5 and 1:100 soil to solution ratio. Also effect of aging time on the bioaccessibility of arsenic was investigated over the 6 months. After 48 hours(fresh) contacting As(V) solution with soils, all soils rapidly and strongly sequestrated As(V), especially Ult-B. However, little sequestration was observed after 3-months. When As(III) was spiked on the same soils, a great portion of As(III) was oxidized to As(V) after 48 hrs, especially Inc-A and Ult-A soils, which is strongly related with Mn content in soils. By using As(III)-spiked soils, much reduced bioaccessibility as total arsenic was observed from Inc-B and Ult-B soils over the 6 months aging time compared to that from Inc-A and Ult-A soils. This result can be explained by the continuous sequestration of As(V), produced from oxidation of As(III), onto Inc-B and Ult-B soils having much amount of iron. The trend of As(III) sequestration over six months aging time was quite similar with that of As(V) sequestration.

Synthesis of arsenic adsorbent using graft polymerization

  • SEKO Noriaki;TAMADA Hasao
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.11a
    • /
    • pp.199-203
    • /
    • 2004
  • Fibrous arsenic (As) adsorbent was synthesized by loading zirconium (Zr) on fibrous phosphoric adsorbent that was directly synthesized by radiation-induced graft polymerization of 2-hydroxyethyl methacrylate phosphoric acid on polyethylene-coated polypropylene nonwoven fabric. Zirconium reacted with phosphoric acid grafted in the polyethylene layer. Zirconium density of the resulting adsorbent was 4.1 mmol/g. The breakthrough curve of As(V) adsorption was independent of the flow rate up to $1300\;h^{-1}$ in space velocity. The total capacity of As(V) was 2.0 mmol/g-adsorbent at pH of 2. The adsorbed Zr(IV) could be evaluated by 0.4 M sodium hydroxide solution because negligible Zr(IV) could be found in the eluted solution.

  • PDF

Enhanced Arsenic(V) Removal from Aqueous Solution by a Novel Magnetic Biochar Derived from Dairy Cattle Manure

  • Akyurek, Zuhal;Celebi, Hande;Cakal, Gaye O.;Turgut, Sevnur
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.423-432
    • /
    • 2022
  • Magnetic biochar produced from pyrolysis of dairy cattle manure was used to develop an effective sorbent for arsenic purification from aqueous solution. Biomass and magnetized biomass were pyrolyzed in a tube furnace with 10 ℃/min heating rate at 450 ℃ under nitrogen flow of 100 cm3/min for 2 h. Biochars were characterized by SEM-EDX, BET, XDR, FTIR, TGA, zeta potential analysis. The resultant biochar and magnetic biochar were opposed to 50-100-500 ppm As(V) laden aqueous solution. Adsorption experiments were performed by using ASTM 4646-03 batch method. The effects of concentration, pH, temperature and stirring rate on adsorption were evaluated. As(V) was successfully removed from aqueous solution by magnetic biochar due to its highly porous structure, high aromaticity and polarity. The results suggest dairy cattle manure pyrolysis is a promising route for managing animal manure and producing a cost effective biosorbent for efficient immobilization of arsenic in aqueous solutions.

Removal of Inorganic Arsenic from Steamed Hijiki Sargassum fusiforme Concentrate Using Activated Carbon (활성탄을 이용한 톳(Sargassum fusiforme) 자숙농축액 내 무기비소 저감 기술)

  • Kang, Eun Hye;Lee, Ka Jeong;Jo, Mi Ra;Yu, Hongsik;Son, Kwang Tae;Yoon, Minchul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.4
    • /
    • pp.561-567
    • /
    • 2021
  • The edible sargasso seaweed hijiki Sargassum fusiforme is known to have high concentration of arsenic, which is a threat to human health, particularly due to inorganic arsenic. In this study, various methods were used to remove inorganic arsenic from steamed hijiki concentrate. The highest concentration of arsenate [As(V)] in both raw and processed hijiki during steamed hijiki manufacturing process was within the range of 8.213-14.356 mg/kg, and it is a potential source of inorganic arsenic, which can result in re-contamination and cause environmental pollution. The removal efficiencies of the various removal methods were within the range of 57.3-83.4%, and 19.0% reduction was achieved using activated carbon and alginate bead. Further, activated carbon showed the best adsorption effect of inorganic arsenic. Therefore, we suggest that activated carbon is a suitable efficient method for removing inorganic arsenic and has low operational costs in field applicability.

Pharmacokinetics of Arsenic Hexaoxide, a Anticancer Compound, in Rats (흰쥐에서 항암성화합물인 육산화비소의 체내동태)

  • Lee, Pung-Sok;Shin, Dae-Hwan;Lee, So-Young;Lee, Jung-Yeol;Lee, Kyoung-Mi;Kwon, Koo-Hyun;Chung, Youn-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.6
    • /
    • pp.377-383
    • /
    • 2006
  • The purpose of the present study was to examine the pharmacokinetic characteristics of arsenic hexaoxide($As_4O_6$), a novel anticancer compound, after i.v. bolus and oral administration in rats. We developed an ICP-Mass based method to analyze arsenic hexaoxide levels in plasma, bile, urine, feces, and tissue and validated the method. Arsenic hexaoxide rapidly disappeared from the plasma by 10 min($\alpha$ phase) after i.v. administration, which was followed by the late disappearance in the $\beta$ phase. The mean plasma half-lives($t_{1/2}$) of arsenic hexaoxide at the a and $\beta$ phase when administered at a dose of 5 mg/kg were 1.57 and 29.8 min, respectively. The maximum plasma concentration($C_{max}$) was 230 ng/mL, after oral administration of arsenic hexaoxide at a dose of 50 mg/kg. The bioavailability, which was calculated from the dose-adjusted ratio, of the oral administered arsenic hexaoxide was 1.61%. Of the various tissues tested, arsenic hexaoxide was mainly distributed in the spleen, lung, liver and kidney after oral administration. Arsenic hexaoxide levels in the spleen or lung at 24 hr after oral administration were higher than those of maximum plasma concentration($C_{max}$). The cumulative amounts of arsenic hexaoxide found in the urine by 48 hr after the administration of 50 mg/kg were 5-fold higher than those in the bile. However, the cumulative amounts in the feces were 10-fold higher compared with those of urine, suggesting that arsenic hexaoxide is mostly excreted in the feces. In conclusion, our observations indicated that arsenic hexaoxide was poorly absorbed from the gastro-intestinal tract to the blood circulation and transferred to tissues such as the spleen and lung at 24 hr after oral administration. Moreover, the majority of arsenic hexaoxide appears to be excreted in the feces by 48 hr after oral administration.

Adsorption of Arsenic onto Two-Line Ferrihydrite (비소의 Two-Line Ferrihydrite에 대한 흡착반응)

  • Jung, Young-Il;Lee, Woo-Chun;Cho, Hyen-Goo;Yun, Seong-Taek;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.227-237
    • /
    • 2008
  • Arsenic has recently become of the most serious environmental concerns, and the worldwide regulation of arsenic fur drinking water has been reinforced. Arsenic contaminated groundwater and soil have been frequently revealed as well, and arsenic contamination and its treatment and measures have been domestically raised as one of the most important environmental issues. Arsenic behavior in geo-environment is principally affected by oxides and clay minerals, and particularly iron (oxy)hydroxides have been well known to be most effective in controlling arsenic. Among a number of iron (oxy)hydroxides, for this reason, 2-line ferrihydrite was selected in this study to investigate its effect on arsenic behavior. Adsorption of 2-line ferrihydrite was characterized and compared between As(III) and As(V) which are known to be the most ubiquitous species among arsenic forms in natural environment. Two-line ferrihydrite synthesized in the lab as the adsorbent of arsenic had $10\sim200$ nm for diameter, $247m^{2}/g$ for specific surface area, and 8.2 for pH of zero charge, and those representative properties of 2-line ferrihydrite appeared to be greatly suitable to be used as adsorbent of arsenic. The experimental results on equilibrium adsorption indicate that As(III) showed much stronger adsorption affinity onto 2-line ferrihydrite than As(V). In addition, the maximum adsorptions of As(III) and As(V) were observed at pH 7.0 and 2.0, respectively. In particular, the adsorption of As(III) did not show any difference between pH conditions, except for pH 12.2. On the contrary, the As(V) adsorption was remarkably decreased with increase in pH. The results obtained from the detailed experiments investigating pH effect on arsenic adsorption show that As(III) adsorption increased up to pH 8.0 and dramatically decreased above pH 9.2. In case of As(V), its adsorption steadily decreased with increase in pH. The reason the adsorption characteristics became totally different depending on arsenic species is attributed to the fact that chemical speciation of arsenic and surface charge of 2-line ferrihydrite are significantly affected by pH, and it is speculated that those composite phenomena cause the difference in adsorption between As(III) and As(V). From the view point of adsorption kinetics, adsorption of arsenic species onto 2-line ferrihydrite was investigated to be mostly completed within the duration of 2 hours. Among the kinetic models proposed so for, power function and elovich model were evaluated to be the most suitable ones which can simulate adsorption kinetics of two kinds of arsenic species onto 2-line ferrihydrite.