• Title/Summary/Keyword: Arsenate

Search Result 111, Processing Time 0.024 seconds

Adsorption Characteristics of Arsenic on Composite Adsorbents using Recycled Aluminium Oxides and $TiO_2$ (재생 알루미늄 산화물과 $TiO_2$의 복합성형체를 이용한 비소 흡착 특성)

  • Min, Kyung-Chul;Lee, Seung-Mok;Kim, Keun-Han;Lee, Hee-Yong;Yang, Jae-Kyu;Park, Youn-Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.197-201
    • /
    • 2012
  • The objective of this study was to evaluate the removal efficiency of arsenite and arsenate using composite adsorbents with various mixing ratio of recycled aluminum oxides and $TiO_2$. From batch adsorption experiments, while the removal of As(III) was almost same with 4 different composite samples in the entire pH range, the removal of As(V) was substantially increased as the weight ratio of $TiO_2$ in composite samples reduced and showed anionic adsorption characteristics. Both adsorption of As (III) and As(V) on composite samples followed pseudo-second-order adsorption equation and C-3 showed faster reaction rate for the removal of arsenic. From the adsorption isotherm experiments, Langmuir isotherm explained well and the maximum adsorption capacities of arsenic were obtained with C-1.

Effects of Iron on Arsenic Speciation and Redox Chemistry in Acid Mine Water

  • Bednar A.J.;Garbarino J.R.;Ranville J.F.;Wildeman T.R.
    • Proceedings of the KSEEG Conference
    • /
    • 2004.12a
    • /
    • pp.9-28
    • /
    • 2004
  • Concern about arsenic is increasing throughout the world, including areas of the United States. Elevated levels of arsenic above current drinking-water regulations in ground and surface water can be the result of purely natural phenomena, but often are due to anthropogenic activities, such as mining and agriculture. The current study correlates arsenic speciation in acid mine drainage and mining influenced water with the important water-chemistry properties Eh, pH, and iron(III) concentration. The results show that arsenic speciation is generally in equilibrium with iron chemistry in low pH AMD, which is often not the case in other natural-water matrices. High pH mine waters and groundwater do not 짐ways hold to the redox predictions as well as low pH AMD samples. The oxidation and precipitation of oxyhydroxides depletes iron from some systems, and this also affects arsenite and arsenate concentrations differently through sorption processes.

  • PDF

A Probabilistic Risk Assessment for Inorganic Arsenic (무기비소에 의한 확률론적 위해도 평가)

  • 유동한;하재주
    • Environmental Analysis Health and Toxicology
    • /
    • v.13 no.3_4
    • /
    • pp.95-104
    • /
    • 1998
  • INTRODUCTION : Arsenic is a ubiquitous element present in various compounds throughout the earth's crust. The use of arsenic compounds increased greatly during the 18th and 19th centuries, including its use in pigments and dyes, as a preservative of animal hides, in glass manufacture, agricultural pesticides, and various pharmaceutical substances. The causal association between human arsenic exposure, usually in the form of inorganic compounds containing trivalent arsenite (As$^{III}$) or pentavalent arsenate (As$^V$), and various forms of human cancer has been known for many years.

  • PDF

Exploring Reliability of Wood-Plastic Composites: Stiffness and Flexural Strengths

  • Perhac, Diane G.;Young, Timothy M.;Guess, Frank M.;Leon, Ramon V.
    • International Journal of Reliability and Applications
    • /
    • v.8 no.2
    • /
    • pp.153-173
    • /
    • 2007
  • Wood-plastic composites (WPC) are gaining market share in the building industry because of durability/maintenance advantages of WPC over traditional wood products and because of the removal of chromated copper arsenate (CCA) pressure-treated wood from the market. In order to ensure continued market share growth, WPC manufacturers need greater focus on reliability, quality, and cost. The reliability methods outlined in this paper can be used to improve the quality of WPC and lower manufacturing costs by reducing raw material inputs and minimizing WPC waste. Statistical methods are described for analyzing stiffness (tangent modulus of elasticity: MOE) and flexural strength (modulus of rupture: MOR) test results on sampled WPC panels. Descriptive statistics, graphs, and reliability plots from these test data are presented and interpreted. Sources of variability in the MOE and MOR of WPC are suggested. The methods outlined may directly benefit WPC manufacturers through a better understanding of strength and stiffness measures, which can lead to process improvements and, ultimately, a superior WPC product with improved reliability, thereby creating greater customer satisfaction.

  • PDF

Comparative Study of Holmium (III) Selective Sensors Based on Thiacalixarene and Calixarene Derivatives as an Ionophore

  • Singh, Sanjay;Rani, Geeta
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2229-2237
    • /
    • 2012
  • The two chelates based on calix[4]arene and thiacalix[4]arene have been synthesized and used as neutral ionophores for preparing PVC based membrane sensor selective to $Ho^{3+}$ ion. The addition of potassium tetrakis(4-chlorophenyl)borate (KTpClPB) and various plasticizers, viz., NDPE, o-NPOE, DOP, TEP and DOS have been found to improve significantly the performance of the sensors. The best performance was obtained with the sensor no. 6 having membrane of $L_2$ with composition (w/w) ionophore (2%): KTpClPB (4%): PVC (37%): NDPE (57%). This sensor exhibits Nernatian response with slope $21.10{\pm}0.3mV/decade$ of activity in the concentration range $3.0{\times}10^{-8}-1.0{\times}10^{-2}M\;Ho^{3+}\;ion$, with a detection limit of $1.0{\times}10^{-8}M$. The proposed sensor performs satisfactorily over a wide pH range of 2.8-10, with a fast response time (5 s). The sensor was also found to work successfully in partially non-aqueous media up to 25% (v/v) content of methanol, ethanol and acetonitrile, and can be used for a period of 4 months without any significant drift in potential. The electrode was also used for the determination of $Ho^{3+}$ ions in synthetic mixtures of different ions and the determination of the arsenate ion in different water samples.

Fermentation of MR-387A and B, Novel Aminopeptidase M Inhibitors by Streptomyces sp. SL-387: Phosphate Repression of Inhibitor Formation

  • YUNG-HEE KHO;CHUNG, MYUNG-CHUL;HYO-KON CHUN;HO-JAE LEE;CHOONG-HWAN LEE,;SU-IL KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.213-217
    • /
    • 1995
  • The effect of inorganic phosphate on the fermentative production of aminopeptidase M inhibitors MR-387A and B by Streptomyces sp. SL-387 has been studied. With inorganic phosphate concentrations higher than 0.78 mM, an inverse correlation was found between the maximum inhibitor production and the initial phosphate concentration added. Growth sensitivity of this actinomycete to arsenate, a phosphate analogue, and the use of magnesium carbonate, a phosphate-trapping agent, suggested that the inhibitor formation was under phosphate repression. Exogenous ATP further increased the degree of phosphate interference in both phosphate-repressed and non repressed culture conditions. The use of a phosphate analogue and a protein synthesis inhibitor also suggested that the phosphate itself repressed inhibitor formation.

  • PDF

Fixation and Leaching Characteristics of CCA- and CCFZ- Treated Domestic Softwood Species

  • Kim, Jae-Jin;Kim, Hyung-Jun;Ra, Jong-Bum;Chun, Su Kyoung;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.55-59
    • /
    • 2003
  • The fixation and leaching characteristics of chromated copper arsenate (CCA Type C) and chromium- copper-fluoride-zinc (CCFZ) in domestic softwood (Japanese red pine, Korean pine, and Japanese larch) sapwood were investigated using the expressate method to follow chromium fixation and the American Wood-Preservers' Association (AWPA) leaching procedure to determine leaching properties after fixation. The rates of fixation were affected by preservative types; CCA was fixed much faster than CCFZ for all species evaluated. There were definite differences in the fixation rates of different species, with Korean pine requiring shorter to fix than the other species evaluated. Chromium fixation was greatly enhanced by elevated temperatures, and fixation time can be estimated according to fixation temperatures applied. The percentage of arsenic and zinc leached from domestic softwoods was relatively high compared to chromium and copper, indicating that there is still a relatively high unfixed arsenic and zinc components after complete chromium fixation in CCA-and CCFZ-treated samples, respectively.

Leaching of Arsenic in Soils Amended with Crushed Arsenopyrite Rock

  • Lee, Kyosuk;Shim, Hoyoung;Lee, Dongsung;Yang, Jae E.;Chung, Dougyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.2
    • /
    • pp.113-119
    • /
    • 2014
  • Arsenic and its compounds which is one of the most toxic elements that can be found naturally on earth in small concentrations are used in the production of pesticides, herbicides, and insecticides. Most arsenic that cannot be mobilized easily when it is immobile is also found in conjunction with sulfur in minerals such as arsenopyrite (AsFeS), realgar, orpiment and enargite. In this investigation we observed the leaching of arsenic in soils amended with several levels of gravel size of arsenopyrite collected from a road construction site. Soil and gravel size of arsenopyrite were characterized by chemical and mineralogical analyses. Results of XRF analysis of arsenopyrite indicated that the proportion of arsenate was 0.075% (wt $wt^{-1}$) while the maximum amount of arsenic in soil samples was 251.3 mg $kg^{-1}$. Cumulative amounts of effluent collected from the bottom of the soil column for different mixing rate of the gravel were gradually increased where proportion of the gravel mixed was greater than 70% whereas the effluent was stabilized to the maximum after approximately 45 pore volumes of effluent or greater were collected. The arsenic in the effluent was recovered from the soil columns in which the proportion of arsenopyrite gravel was 60% or greater. The total amount of arsenic recovered as effluent was increased with increasing proportion of gravel in a soil, indicating that the arsenic in the effluent was closely related with gravel fraction of arsenopyrite.

Preliminary Results of Extraction, Separation and Quantitation of Arsenic Species in Food and Dietary Supplements by HPLC-ICP-MS

  • Nam, Sang-Ho;Cheng, John;Mindak, William R.;Capar, Stephen G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.903-908
    • /
    • 2006
  • Various extraction procedures were investigated using reference materials and samples to evaluate extraction efficiency and effectiveness. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure total arsenic and to quantitate arsenic species when coupled to an HPLC (high pressure liquid chromatography). Arsenic species were extracted from rice flour (NIST SRM 1568a) with water/methanol mixtures using accelerated solvent extraction (ASE). Total arsenic extraction efficiency ranged from 42 to 64%, for water and various methanol concentrations. From spinach (NIST SRM 1570), freeze-dried apple, and rice flour (NIST SRM 1568a), arsenic species were extracted with trifluoroacetic acid (TFA) at 100 ${^{\circ}C}$. Total arsenic extraction efficiency was 90% for spinach, 75% for freeze-dried apple, and 83% for rice flour. Enzymatic extraction with alpha-amylase and sonication resulted in extraction efficiency of 104% for rice flour, 98% for freeze-dried apple, and 7% for spinach. Chromatograms of arsenic species extracted by the optimum extraction methods were obtained, and the species were quantified. Arsenite (As(III)), arsenate (As(V)), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA) were found in the apple sample, and DMA and As(V) in the rice flour sample. As(V) and MMA were found in three herbal dietary supplement samples.

Solidification and Stabilization of Metal(loid)s-contaminated Soils using Single Binders (단일 고형화제를 이용한 중금속류 오염 토양의 고형화/안정화)

  • Park, Hye Ok;Choi, Jiyeon;Oh, Sanghwa;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.135-147
    • /
    • 2015
  • Remediation of metal(loid)s-contaminated sites is crucial to protect human and ecosystem. Solidification and stabilization of metal(loid)s by the binder amendment is one of the cost-effective technologies. In this study, metal (loid)s in various field-contaminated soils obtained from steel-making, metal refinery and mining tillage were immobilized by the application of single binders such as diammonium phosphate (DAP), lime, and ladle slag. The efficiency of solidification and stabilization was evaluated by Toxicity Characteristic Leaching Procedure (TCLP) and the Standard, Measurements and Testing programme of European Union (SM&T) extraction processes. In terms of TCLP extraction, the binder was effective in order of lime > DAP > ladle slag. All binders were highly effective in the immobilization of Pb, Zn, Cu, Ni, and Cd. The increased immobilization efficiency is attributed to the increase in the Step III and IV fractions of the SM&T extraction. Lime and ladle slag were highly effective in the immobilization of the metal(loid)s, however, As release increased with DAP due to competition between the phosphate originated from DAP and arsenate. A further study is needed for the better immobilization of multi metal(loid)s using binary binders.