• Title/Summary/Keyword: Arrhythmia Detection

Search Result 98, Processing Time 0.023 seconds

Development of Holter ECG Monitor with Improved ECG R-peak Detection Accuracy (R 피크 검출 정확도를 개선한 홀터 심전도 모니터의 개발)

  • Junghyeon Choi;Minho Kang;Junho Park;Keekoo Kwon;Taewuk Bae;Jun-Mo Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.62-69
    • /
    • 2022
  • An electrocardiogram (ECG) is one of the most important biosignals, and in particular, continuous ECG monitoring is very important in patients with arrhythmia. There are many different types of arrhythmia (sinus node, sinus tachycardia, atrial premature beat (APB), and ventricular fibrillation) depending on the cause, and continuous ECG monitoring during daily life is very important for early diagnosis of arrhythmias and setting treatment directions. The ECG signal of arrhythmia patients is very unstable, and it is difficult to detect the R-peak point, which is a key feature for automatic arrhythmias detection. In this study, we develped a continuous measuring Holter ECG monitoring device and software for analysis and confirmed the utility of R-peak of the ECG signal with MIT-BIH arrhythmia database. In future studies, it needs the validation of algorithms and clinical data for morphological classification and prediction of arrhythmias due to various etiologies.

T Wave Detection Algorithm based on Target Area Extraction through QRS Cancellation and Moving Average (QRS구간 제거와 이동평균을 통한 대상 영역 추출 기반의 T파 검출 알고리즘)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.450-460
    • /
    • 2017
  • T wave is cardiac parameters that represent ventricular repolarization, it is very important to diagnose arrhythmia. Several methods for detecting T wave have been proposed, such as frequency analysis and non-linear approach. However, detection accuracy is at the lower level. This is because of the overlap of the P wave and T wave depending on the heart condition. We propose T wave detection algorithm based on target area extraction through QRS cancellation and moving average. For this purpose, we detected Q, R, S wave from noise-free ECG(electrocardiogram) signal through the preprocessing method. And then we extracted P, T target area by applying decision rule for four PAC(premature atrial contraction) pattern another arrhythmia through moving average and detected T wave using RT interval and threshold of RR interval. The performance of T wave detection is evaluated by using 48 record of MIT-BIH arrhythmia database. The achieved scores indicate the average detection rate of 95.32%.

An SPC-Based Forward-Backward Algorithm for Arrhythmic Beat Detection and Classification

  • Jiang, Bernard C.;Yang, Wen-Hung;Yang, Chi-Yu
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.4
    • /
    • pp.380-388
    • /
    • 2013
  • Large variation in electrocardiogram (ECG) waveforms continues to present challenges in defining R-wave locations in ECG signals. This research presents a procedure to extract the R-wave locations by forward-backward (FB) algorithm and classify the arrhythmic beat conditions by using RR intervals. The FB algorithm shows forward and backward searching rules from QRS onset and eliminates lower-amplitude signals near the baseline using a statistical process control concept. The proposed algorithm was trained the optimal parameters by using MIT-BIH arrhythmia database (MITDB), and it was verified by actual Holter ECG signals from a local hospital. The signals are classified into normal (N) and three arrhythmia beat types including premature ventricular contraction (PVC), ventricular flutter/fibrillation (VF), and second-degree heart block (BII) beat. This work produces 98.54% accuracy in the detection of R-wave location; 98.68% for N beats; 91.17% for PVC beats; and 87.2% for VF beats in the collected Holter ECG signals, and the results are better than what are reported in literature.

Detection of Abnormal Heartbeat using Hierarchical Qassification in ECG (계층구조적 분류모델을 이용한 심전도에서의 비정상 비트 검출)

  • Lee, Do-Hoon;Cho, Baek-Hwan;Park, Kwan-Soo;Song, Soo-Hwa;Lee, Jong-Shill;Chee, Young-Joon;Kim, In-Young;Kim, Sun-Il
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.6
    • /
    • pp.466-476
    • /
    • 2008
  • The more people use ambulatory electrocardiogram(ECG) for arrhythmia detection, the more researchers report the automatic classification algorithms. Most of the previous studies don't consider the un-balanced data distribution. Even in patients, there are much more normal beats than abnormal beats among the data from 24 hours. To solve this problem, the hierarchical classification using 21 features was adopted for arrhythmia abnormal beat detection. The features include R-R intervals and data to describe the morphology of the wave. To validate the algorithm, 44 non-pacemaker recordings from physionet were used. The hierarchical classification model with 2 stages on domain knowledge was constructed. Using our suggested method, we could improve the performance in abnormal beat classification from the conventional multi-class classification method. In conclusion, the domain knowledge based hierarchical classification is useful to the ECG beat classification with unbalanced data distribution.

The Classification of Electrocardiograph Arrhythmia Patterns using Fuzzy Support Vector Machines

  • Lee, Soo-Yong;Ahn, Deok-Yong;Song, Mi-Hae;Lee, Kyoung-Joung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.204-210
    • /
    • 2011
  • This paper proposes a fuzzy support vector machine ($FSVM_n$) pattern classifier to classify the arrhythmia patterns of an electrocardiograph (ECG). The $FSVM_n$ is a pattern classifier which combines n-dimensional fuzzy membership functions with a slack variable of SVM. To evaluate the performance of the proposed classifier, the MIT/BIH ECG database, which is a standard database for evaluating arrhythmia detection, was used. The pattern classification experiment showed that, when classifying ECG into four patterns - NSR, VT, VF, and NSR, VT, and VF classification rate resulted in 99.42%, 99.00%, and 99.79%, respectively. As a result, the $FSVM_n$ shows better pattern classification performance than the existing SVM and FSVM algorithms.

Optimal R Wave Detection and Advanced PVC Classification Method through Extracting Minimal Feature in IoT Environments (IoT 환경에서 최적 R파 검출 및 최소 특징점 추출을 통한 향상된 PVC 분류방법)

  • Cho, Iksung;Woo, Dongsik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.4
    • /
    • pp.91-98
    • /
    • 2017
  • Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require higher computational cost and larger processing time. Therefore it is necessary to design efficient algorithm that classifies PVC(premature ventricular contraction) and decreases computational cost by accurately detecting minimal feature point based on only R peak through optimal R wave. We propose an optimal R wave detection and PVC classification method through extracting minimal feature point in IoT environment. For this purpose, we detected R wave through optimal threshold value and extracted RR interval and R peak pattern from noise-free ECG signal through the preprocessing method. Also, we classified PVC in realtime through RR interval and R peak pattern. The performance of R wave detection and PVC classification is evaluated by using record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.758% in R wave detection and the rate of 93.94% in PVC classification.

Premature Contraction Arrhythmia Classification through ECG Pattern Analysis and Template Threshold (ECG 패턴 분석과 템플릿 문턱값을 통한 조기수축 부정맥분류)

  • Cho, Ik-sung;Cho, Young-Chang;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.437-444
    • /
    • 2016
  • Most methods for detecting arrhythmia require pp interval, diversity of P wave morphology, but it is difficult to detect the p wave signal because of various noise types. Therefore it is necessary to use noise-free R wave. In this paper, we propose algorithm for premature contraction arrhythmia classification through ECG pattern analysis and template threshold. For this purpose, we detected R wave through the preprocessing method using morphological filter, subtractive operation method. Also, we developed algorithm to classify premature contraction wave pattern using weighted average, premature ventricular contraction(PVC) and atrial premature contraction(APC) through template threshold for R wave amplitude. The performance of R wave detection, PVC classification is evaluated by using 6 record of MIT-BIH arrhythmia database that included over 30 PVC and APC. The achieved scores indicate the average of 99.77% in R wave detection and the rate of 94.91%, 95.76% in PVC and APC classification.

P Wave Detection Algorithm through Adaptive Threshold and QRS Peak Variability (적응형 문턱치와 QRS피크 변화에 따른 P파 검출 알고리즘)

  • Cho, Ik-sung;Kim, Joo-Man;Lee, Wan-Jik;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1587-1595
    • /
    • 2016
  • P wave is cardiac parameters that represent the electrical and physiological characteristics, it is very important to diagnose atrial arrhythmia. However, It is very difficult to detect because of the small size compared to R wave and the various morphology. Several methods for detecting P wave has been proposed, such as frequency analysis and non-linear approach. However, in the case of conduction abnormality such as AV block or atrial arrhythmia, detection accuracy is at the lower level. We propose P wave detection algorithm through adaptive threshold and QRS peak variability. For this purpose, we detected Q, R, S wave from noise-free ECG signal through the preprocessing method. And then we classified three pattern of P wave by peak variability and detected adaptive window and threshold. The performance of P wave detection is evaluated by using 48 record of MIT-BIH arrhythmia database. The achieved scores indicate the average detection rate of 92.60%.

A Study on the Detection of the Ventricular Fibrillation based on Wavelet Transform and Artificial Neural Network (웨이브렛과 신경망 기반의 심실 세동 검출 알고리즘에 관한 연구)

  • Song Mi-Hye;Park Ho-Dong;Lee Kyoung-Joung;Park Kwang-Li
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.11
    • /
    • pp.780-785
    • /
    • 2004
  • In this paper, we proposed a ventricular fibrillation detection algorithm based on wavelet transform and artificial neural network. we selected RR intervals, the 6th and 7th wavelet coefficients(D6, D7) as features for classifying ventricular fibrillation. To evaluate the performance of the proposed algorithm, we compared the result of the proposed algorithm with that of fuzzy inference and fuzzy-neural network. MIT-BIH Arrhythmia database, Creighton University Ventricular Tachyarrhythmia database and MIH-BIH Malignant Ventricular Arrhythmia database were used as test and learning data. Among the algorithms, the proposed algorithm showed that the classification rate of normal and abnormal beat was sensitivity(%) of 96.10 and predictive positive value(%) of 99.07, and that of ventricular fibrillation was sensitivity(%) of 99.45. Finally. the proposed algorithm showed good performance compared to two other methods.

Arrhythmia Classification using Hybrid Combination Model of CNN-LSTM (합성곱-장단기 기억 신경망의 하이브리드 결합 모델을 이용한 부정맥 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.76-84
    • /
    • 2022
  • Arrhythmia is a condition in which the heart beats abnormally or irregularly, early detection is very important because it can cause dangerous situations such as fainting or sudden cardiac death. However, performance degradation occurs due to personalized differences in ECG signals. In this paper, we propose arrhythmia classification using hybrid combination model of CNN-LSTM. For this purpose, the R wave is detected from noise removed signal and a single bit segment was extracted. It consisted of eight convolutional layers to extract the features of the arrhythmia in detail, used them as the input of the LSTM. The weights were learned through deep learning and the model was evaluated by the verification data. The performance was compared in terms of the accuracy, precision, recall, F1 score through MIT-BIH arrhythmia database. The achieved scores indicate 92.3%, 90.98%, 92.20%, 90.72% in terms of the accuracy, precision, recall, F1 score, respectively.