• Title/Summary/Keyword: Arrhenius function

Search Result 65, Processing Time 0.021 seconds

Models for Hydration Heat Development and Mechanical Properties of Ultra High Performance Concrete (초고성능 콘크리트의 수화발열 및 역학적 특성 모델)

  • Cha, Soo-Won;Kim, Ki-Hyun;Kim, Sung-Wook;Park, Jung-Jun;Bae, Sung-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.389-397
    • /
    • 2010
  • Concrete has excellent mechanical properties, high durability, and economical advantages over other construction materials. Nevertheless, it is not an easy task to apply concrete to long span bridges. That's because concrete has a low strength to weight ratio. Ultra high performance concrete (UHPC) has a very high strength and hence it allows use of relatively small section for the same design load. Thus UHPC is a promising material to be utilized in the construction of long span bridges. However, there is a possibility of crack generation during the curing process due to the high binder ratio of UHPC and a consequent large amount of hydration heat. In this study, adiabatic temperature rise and mechanical properties were modeled for the stress analysis due to hydration heat. Adiabatic temperature rise curve of UHPC was modeled superposing 2-parameter model and S-shaped function, and the Arrhenius constant was determined using the concept of equivalent time. The results are verified by the mock-up test measuring the temperature development due to the hydration of UHPC. In addition, models for mechanical properties such as elastic modulus, tensile strength and compressive strength were developed based on the test results from conventional load test and ultrasonic pulse velocity measurement.

The Effect of Greenhouse Climate Change by Temporary Shading at Summer on Photo Respiration, Leaf Temperature and Growth of Cucumber (여름철 수시차광에 의한 온실 환경변화가 오이의 광호흡, 엽온, Thermal breakdown 등 생육에 미치는 영향)

  • Kim, Dong Eok;Kwon, Jin Kyung;Hong, Soon Jung;Lee, Jong Won;Woo, Young Hoe
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.306-312
    • /
    • 2020
  • This study was conducted to investigate cucumber plants response to greenhouse environments by solar shading in greenhouse in the summer. In order to estimate heat stress reduction of cucumber plants by solar shading in greenhouse, we measured and analyzed physiological conditions of cucumber plants, such as leaf temperature, leaf-air temperature, rubisco maximum carboxylation rate, maximum electron transport rate, thermal breakdown, light leaf respiration, etc. Shading levels were 90% mobile shading of full sunlight, 40% mobile shading of full sunlight and no shading(full sunlight). The 90% shading screen was operated when the external solar radiation is greater than 650 W·m-2. Air temperature, solar radiation, leaf temperature, leaf-air temperature and light leaf respiration in the 90% shading of full sunlight was lower than those of 40% shading and no shading. Rubisco maximum carboxylation rate, arrhenius function value and light leaf respiration of the 90% shading were significantly lower than those of 40% shading and no shading. The thermal breakdown, high temperature inhibition, of 90% shading was significantly higher than that of 40% shading and no shading. Therefore, these results suggest that 90% mobile shading made a less stressful growth environment for cucumber crops.

Effect of Reaction Conditions for n-Butane Dehydrogenation over Pt-Sn/θ-Al2O3 Catalyst (Pt-Sn/θ-Al2O3 촉매상에서 반응조건에 따른 n-부탄의 탈수소화 반응)

  • Cho, Kyung-Ho;Kang, Seong-Eun;Park, Jung-Hyun;Cho, Jun-Hee;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.162-169
    • /
    • 2012
  • Pt-Sn/${\theta}-Al_2O_3$ catalyst for n-butane dehydrogenation reaction was prepared by incipient wetness method. To confirm the physicochemical properties of Pt-Sn/${\theta}-Al_2O_3$ catalyst, the characterization was performed using X-ray diffraction (XRD), $N_2$ sorption analysis, temperature programmed desorption of $NH_3$ ($NH_3$-TPD), temperature programmed reduction of $H_2$ ($H_2$-TPR) techniques. Also, the catalytic activities of Pt-Sn/${\theta}-Al_2O_3$ for n-butane dehydrogenation was tested as a function of pretreatment temperature, pretreatment time, reaction temperature, and the partial pressure of n-butane and hydrogen. The sum of selectivities to n-butenes consisting of 1-butene, cis-2-butene, and trans-2-butene was almost constant 95% in the range of conversion of n-butane 5-55%. The activation energy calculated from Arrhenius equation was $82.4kJ\;mol^{-1}$ and the reaction orders of n-butane and hydrogen from Power's law were 0.70 and -0.20, respectively.

Adsorption and Diffusion Characteristics of Benzene, Toluene, and Xylene Vapors on Activated Carbon and Zeolite 13X (활성탄과 제올라이트 13X에서 벤젠, 톨루엔 및 자일렌 증기의 흡착 및 확산 특성)

  • Jung, Min-Young;Suh, Sung-Sup
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.358-367
    • /
    • 2019
  • Adsorption equilibrium and intraparticle diffusion characteristics of benzene, toluene, and xylene vapors on activated carbon and zeolite 13X were investigated. Static adsorption experiments were carried out under the pressure range of 0.01~0.07 bar while changing the adsorption temperature to 293.15 K, 303.15 K, and 313.15 K, respectively. Adsorption equilibrium was analyzed by Langmuir, Freundlich and Toth models. The adsorption energy was 5.26~31.0 kJ/mol representing physical adsorption characteristics. The maximum adsorption capacity on activated carbon was the largest for benzene, and the smallest for xylene. Toluene was in between. In the case of zeolite 13X, the maximum adsorption capacity was the largest for xylene, and the smallest for benzene as opposed to activated carbon. The effective diffusion coefficients of gas adsorbate were measured to be about $10^{-5}{\sim}10^{-4}cm^2/s$, and increased with temperature. As the pressure increased, the effective diffusion coefficients were decreased. The dependence of effective diffusion coefficients on temperature and pressure was greater in zeolite 13X particles than in activated carbon. Therefore, it is necessary to express the diffusion coefficients as a function of pressure in order to predict the precise dynamic behavior of the adsorption process using zeolite 13X where the pressure fluctuation occurs abruptly.

Persistence of Fungicide Pencycuron in Soils (토양 중 살균제 Pencycuron의 잔류 특성)

  • An, Xue-Hua;An, Wen-Hao;Im, Il-Bin;Lee, Sang-Bok;Kang, Jong-Gook
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.4
    • /
    • pp.296-305
    • /
    • 2006
  • The adsorption and persistence of pencycuron {1-(4-chlorobenzyl) cyclopentyl-3-phenylurea} in soils were investigated under laboratory and field conditions to in order to assess the safety use and environmental impact. In the adsorption rate experiments, a significant power function of relation was found between the adsorbed amount of pencycuron and the shaking time. Within one hour following the shaking, the adsorption amounts in the SCL and the SiCL were 60 and 65% of the maximum adsorption amounts, respectively. The adsorption reached a quasi-equilibrium 12 hours after shaking. The adsorption isotherms followed the Freundlich equation. The coefficient (1/n) indicating adsorption strength and degree of nonlinearity was 1.45 for SCL and 1.68 to SiCL. The adsorption coefficients ($K_d$) were 2.31 for SCL and 2.92 to SiCL, and the organic carbon partition coefficient, $K_{oc}$, was 292.9 in SCL and 200.5 inSiCL. In the laboratory study, the degradation rate of pencycuron in soils followed a first-order kinetic model. The degradation rate was greatly affected by soil temperature. As soil incubation temperature was increased from 12 to $28^{\circ}C$, the residual half life was decreased from 95 to 20 days. Arrhenius activation energy was 57.8 kJ $mol^{-1}$. Furthermore, the soil moisture content affected the degradation rate. The half life in soil with 30 to 70% of field moisture capacity was ranged from 21 to 38 days. The moisture dependence coefficient, B value in the empirical equation was 0.65. In field experiments, the half-life were 26 and 23 days, respectively. The duration for period of 90% degradation was 57 days. The difference between SCL and SiCL soils varied to pencycuron degradation rates were very limited, particularly under the field conditions, even though the characteristics of both soils are varied.