• Title/Summary/Keyword: Arrhenius activation

Search Result 345, Processing Time 0.027 seconds

Gasification reactivity of Chinese Shinwha Coal Chars with Steam (스팀을 이용한 중국산 신화 석탄 촤 가스화 반응에 관한 연구)

  • Kang, Min-Woong;Seo, Dong-Kyun;Kim, Yong-Tak;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.22-29
    • /
    • 2010
  • In this study, carbon conversion was measured using an electronic mass balance. In a lab scale furnace, each coal sample was pyrolyzed in a nitrogen environment and became coal char, which was then gasified with steam under isothermal conditions. The reactivity of coal char was investigated at various temperatures and steam concentrations. The VRM(volume reaction model), SCM(shrinking core model), and RPM(random pore model) were used to interpret experimental data. For each model the activation energy(Ea), pre-exponential factor (A), and reaction order(n) of the coal char-steam reaction were determined by applying the Arrhenius equation into the data obtained with thermo-gravimetric analysis(TGA). According to this study, it was found that experimental data agreed better with the VRM and SCM for 1,000 and $1,100^{\circ}C$, and the RPM for 1,200 and $1,300^{\circ}C$. The reactivity of chars increased with the increase of gasification temperature. The structure parameter(${\psi}$) of the surface area for the RPM was obtained.

A Study on the Accelerated Life Test for Evaluating the Reliability of Nickel-Cadmium Batteries

  • Kwon, Soo-Ho;Huh, Yang-Hyun;Lim, Tae-Jin
    • International Journal of Reliability and Applications
    • /
    • v.1 no.1
    • /
    • pp.89-104
    • /
    • 2000
  • Accelerated testing consists of a variety of test methods for shortening the life of products or hastening the degradation of their performance. This paper presents practical, modern statistical methods for evaluating the reliability of Nickel-Cadmium batteries at their design temperature of 2$0^{\circ}C$ by accelerated life test. Batteries have been life tested at three high temperature conditions, 50, 60, 7$0^{\circ}C$, respectively to yield failures quickly. The failures have been observed and judged by means of charge and discharge current integration. Analyses of life data from those conditions resulted in the Weibull distribution, which has been verified on the ground of the Kolmogorov-smirnov test and the pairwise t-test. Life data are modeled according to the Arrhenius life-temperature relationship. The mean life of tested batteries is assessed at about 590 cycles, and the activation energy of this chemical reaction is concluded to be 0.39eV as results. This study provides procedures for estimating the reliability of batteries in a short period, which has little been possible in domestic industries. The results can be applied in many fields such as proof testing, acceptance testing, and estimating assurance periods.

  • PDF

Relaxation phenomena of electro-optic coefficient in P(VDF-TrFE) copolymers (강유전성 고분자인 P(VDF-TrFE)공중합체의 전기광학계수의 완화현상)

  • 임종선;박광서
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.225-229
    • /
    • 2001
  • Relaxation phenomena of the electro-optic coefficient in ferroelectric copolymer P (VDF- TrFE) were studied. The electro-optic coefficient of copolymers was measured by simple reflection method and the decay curves were fitted by KWW stretched exponentials. The copolymers poled near Tc. Were shown to be more stable than the copolymer poled at lower temperatures. Further, the relaxation time t depending on temperature was found to follow Arrhenius behavior and it was found that the activation energy of 50/50 mol% P (VDF-TrFE) copolymer is larger than that of 72/28 mol% copolymer. As a result, the ferroelectric copolymer with VDF of 50 mol% is was more stable.stable.

  • PDF

The Hydrogen Reduction Kinetics of the Sintered Titanium Dioxide (이산화티탄 소결체의 수소환원 속도)

  • 석상일;이오상;이재도
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.167-171
    • /
    • 1999
  • Titanium dioxide bodies sintered at 130$0^{\circ}C$ for 10 h under the oxygen flowing were reduced with hydrogen in 1200, 1250 and 130$0^{\circ}C$ for 4~20 h. Reduction kinetics were evaluated by measuring a weight loss between before and after reduction, and the thickness of reduced layer, respectively. The reduction followed the parabolic rate law, indicating that the rate-determining process is diffusion. From the Arrhenius plots, the apparent activation energies for the reduction were obtained as 210$\pm$10 kJ/mol.

  • PDF

Fracture Mechanics Applied to Fatigue Crack Growth Behavior at Elevated Temperatures (고온 피로균열 성장거동에 관한 파괴역학의 응용에 관한 연구)

  • 서창민;김영호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1552-1560
    • /
    • 1990
  • A general form of the mathematical function in the fatigue crack growth rate law for CT specimens was determined by means of the dimensional analysis at elevated temperatures. The experimental results can be rigorously described by the combination of rate theory and fracture mechanics. The rate theory approach extends the scope of fracture mechanics through the consideration of the temperature. The fatigue crack growth rates are represented by the Arrhenius type equation. This equation explains fairly well the experimental data for Cr-Mo-V rotor steel and A517-F steel in the comparatively wide temperature regions as affected with the temperature and the stress intensity factor range interaction.

Rheological Properties of Concentrated Dandelion Leaf Extracts by Hot Water or Ethanol

  • Lee, Ok-Hwan;Ko, Sung-Kwon;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.264-269
    • /
    • 2006
  • Basic rheological data of dandelion leaf concentrates were determined to predict processing aptitude and usefulness of dandelion leaf concentrates as functional food materials. Hot water and 70% ethanol extracts of dandelion leaves were concentrated at 5, 20, and 50 Brix, and their static and dynamic viscosities, and Arrhenius plots were investigated. Most concentrated dandelion leaves extracted with hot water and 70% ethanol showed flow behaviors close to Newtonian fluid based on power law model evaluation. Apparent viscosity of concentrated dandelion leaves extracted with hot water and 70% ethanol decreased with increasing temperature. Yield stresses of concentrated dandelion leaves extracted with hot water and 70% ethanol by Herschel-Bulkley model application were 0.020-0.641 and 0.017-0.079 Pa, respectively. Activation energies of concentrated dandelion leaves extracted with hot water and 70% ethanol were $2.102-32.669{\times}10^3$ and $1.657-5.382{\times}10^3\;J/mol{\cdot}kg$ with increasing concentration, respectively. Loss modulus (G") predominated over storage modulus (G') at all applied frequencies, showing typical flow behavior of low molecular solution. G' and G" of concentrated dandelion leaves extracted with hot water slowly increased with increasing frequency compared to those of concentrated dandelion leaves extracted with 70% ethanol.

The Investigation of Detonation Characteristics of Ethylene Oxide Mixture by Using Incident Shock Tube Technique (입사 충격파관을 이용한 에틸렌 옥사이드 혼합물의 데토네이션 특성연구)

  • Moon, J.H.;Chung, J.D.;Kang, J.G.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.121-134
    • /
    • 1994
  • Shock tube investigation of ethylene oxide-$0_{2}-N_{2}$ mixture have been performed to reveal detonation characteristics of the mixture in terms of detonation pressure and speed. Theoretical calculation of thermodynamic parameters at the Chapmann-Jouguet detonation of the mixture has been also performed. A comparision of the observed results with the calculated ones can lead us to predict the detonation parameters of ethylene oxide in an artificial air. In addition, we have observed ignition delay times of ethylene oxide mixtures. The best fit of the observed delay times to Arrhenius gas kinetic relation gives : ${\tau}=10^{-144}{e{xp}}(E_a/RT)[C_{2}H_{4}O]^{-4.8}[O_{2}]^{-12.4}[N_{2}]^{-14.1}$ $E_a=3.67kcal/mole$ The observed activation energy is markedly reduced, compared with the case of ethylene oxide diluted in Ar. It could be due to the factor that $N_2$ play a role as detonation promoter yielding very reactive NOx radicals.

  • PDF

Kinetics of water vapor adsorption by vacuum-dried jujube powder

  • Lee, Jun Ho;Zuo, Li
    • Food Science and Preservation
    • /
    • v.24 no.4
    • /
    • pp.505-509
    • /
    • 2017
  • Water vapor adsorption kinetics of vacuum-dried jujube powder were investigated in temperature and relative humidity ranges of 10 to $40^{\circ}C$ and 32 to 75%, respectively. Water vapor was initially adsorbed rapidly and then reached equilibrium condition slowly. Reaction rate constant for water vapor adsorption of vacuum-dried jujube powder increased with an increase in temperature. The temperature dependency of water activity followed the Clausius-Clapeyron equation. The net isosteric heat of sorption increased with an increase in water activity. Good straight lines were obtained with plotting of $1/(m-m_0)$ vs. 1/t. It was found that water vapor adsorption kinetics of vacuum-dried jujube powder was accurately described by a simple empirical model, and temperature dependency of the reaction rate constant followed the Arrhenius-type equation. The activation energy ranged from 50.90 to 56.00 kJ/mol depending on relative humidity. Arrhenius kinetic parameters ($E_a$ and $k_0$) for water vapor adsorption by vacuum-dried jujube powder showed an effect between the parameters with the isokinetic temperature of 302.51 K. The information on water vapor adsorption kinetics of vacuum-dried jujube powder can be used to establish the optimum condition for storage and processing of jujube.

A Characterization of Permeation Behavior of Acetic Acid-Water Mixtures Through Crosslinked PAA-PVA Membranes in Pervaporation Separation (투과증발 PAA-PVA막을 통한 초산-물 혼합물의 투과거동에 관한 연구)

  • 김선우;염충균;임지원
    • Membrane Journal
    • /
    • v.6 no.4
    • /
    • pp.227-235
    • /
    • 1996
  • poly(acrylic acid)(PAA)-poly(vinyl alcohol)(PVA) membranes have been prepared by crosslinking reaction between the carboxylic acid groups of PAA and the hydroxylic groups of PVA. In the measurements of the swelling and preferential sorption of the membranes, sorption behaviors of the membranes in pure water, pure acetic acid and a mixture of them have been investigated, respectively. From the measurements of the preferential sorption in 90wt% acetic acid of aqueous mixture, the sorption of water component was found to be more enhanced at high PAA content in the membrane than that of acetic acid component due to the interaction of water with acetic acid. The sorption behavior and the degree of crosslinking influenced competitively the permeation behavior of permeants. Permeation behavior of perrecants through the membranes was analyzed by using permeation activation energies which had been obtained from the Arrhenius plots of fluxes.

  • PDF

Combustion Kinetics of Pulverized Indian Coal-Char in Different CO2-O2 Mixture Isothermally (여러 CO2-O2 혼합기체에서 인도산 분말숯의 등온 연소반응)

  • Saravanan, V.;Shivakumar, R.;babu, P. Niruguna;Ramakrishna
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.635-639
    • /
    • 2009
  • Experimental work was carried out to study the combustion kinetics of the Indian coal-char in the varying mixture of carbon dioxide-oxygen ($CO_2-O_2$). The coal sample was pulverized and sieved to less than 58 microns and charred using volatile furnace by passing the nitrogen gas. The experiments were carried out using the Thermo Gravimetric Analyzer (TGA-50) at CPRI, Bangalore, different proportions of ($CO_2-O_2$) gas was allowed in to the TGA-50 (80-20, 60-40, 40-60, 20-80) mole basis were used to study the combustion kinetics of coal Isothermally, kinetic parameters like Activation energy (E) and the pre-exponential factors (A) are calculated using the unification approach and modified Arrhenius equation.