• Title/Summary/Keyword: Arrhenius Equation

Search Result 276, Processing Time 0.031 seconds

A Study on the Cure Behavior of Epoxy Molding Compound (Epoxy Molding Compound의 경화거동에 관한 연구)

  • 윤상영;오명숙;박내정
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.837-844
    • /
    • 2000
  • The cure behavior of commercial epoxy molding compounds (EMC) commonly used for IC package was studied at constant cure temperatures as well as at constant heating rates using differential scanning calorimetry (DSC), rheometer, and dielectric analyzer (DEA). The cure kinetics were obtained using autocatalytic reaction model according to the Ryan Dutta method after assuming m+n equal to 2. The prediction of reaction rates by the model equation corresponded well to experimental data at all temperatures except for 10$0^{\circ}C$. The phase transitions such as gelation and vitrification occurred during network formation. At each isothermal cure temperature, $T_{g}$ was measured in accordance with cure time, and the vitrification point was attained when $T_{g}$ was equal to $T_{cure}$. The temperature dependence of gel points and vitrification points showed good agreement with Arrhenius relation. DEA using parallel plate electrode was effective for the monitoring of EMC cure. we knew that if the resin systems are materials of comparable quality, $_{gel}$$T_{g}$ is constant regardless of accelerator concentration in TTT (Time-Temperature-Transformation) diagram.

  • PDF

Kinetics on the Microwave Carbonization of Rice Chaff (왕겨의 마이크로파 탄화속도)

  • Kim, Ji Hyun;Ryu, Seung Kon;Kim, Dong Kook
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.683-690
    • /
    • 2005
  • The microwave carbonization of rice chaff was performed, and their kinetics were compared to those of conventional thermal carbonization. Thermal carbonization was carried out at $300-600^{\circ}C$ for 30 minutes. The weight loss and C/H mole ratio remarkably increased as increase of temperature, while there was no carbonization by microwave dielectric heating in spite of increasing incident power and irradiation time. However, microwave carbonization was successfully performed by addition of 6 wt% of thermal carbonized rice chaff, it's C/H mole ratio is larger than 3.0, as a catalytic initiator to uncarbonized rice chaff, and the kinetics was depended on the incident power and irradiation time, resulting in the coincide with thermal carbonization to the Arrhenius equation. The activation energy of microwave carbonization was quite low as compared to that of thermal carbonization, while the kinetic constant was large. This is due to the internal volumetric heating characteristics of carbonized rice chaff by microwave. The effect of ash, and C/H mole ratio and amount of carbonized rice chaff were investigated on microwave carbonization.

Changes of Hydrophobicity, Solubility, SH Group and Protein-Protein Interaction in Yellowtail Myosin and Whelk Paramyosin During Thermal Denaturation (가열 변성에 따른 방어 Myosin과 갈색띠 매물고둥 Paramyosin의 소수성, 용해도, SH기 및 단백질간 상호작용의 변화)

  • Choi, Yeung-Joon;Pyeun, Jae-Hyeung
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.89-96
    • /
    • 1987
  • The denaturation mechanism of the protein during heating of myosin and paramyosin extracted from the ordinary muscle of yellowtail (Seriola qrinqueradits) and the adductor muscle of whelk (Neptunea arthritica cuming) were investigated by analyzing the hydrophobicity, solubility, SH group and protein-protein interaction. The free hydrophobic residue of the two proteins were increased by increase of heating temperature up to $65^{\circ}C$ and then decreased for further temperature raise. The protein-protein interaction was proportional to the increment of the free hydrophobic residue. The aggregation of protein was begun from $65^{\circ}C$ with the decrease of the free hydrophobic residues. The results of Arrhenius equation for the data on proteinprotein interaction showed that the denaturation course was made up with multi-steps in the myosin and two-steps in the paramyosin. The number of free hydrophobic residue and SH group, solubility and protein-protein interaction were significantly differed with the denaturation temperature (p<0.01).

  • PDF

A Kinetic Study of Thermal-Oxidative Decomposition of Waste Polyurethane (폐폴리우레탄의 열적 산화분해에 대한 속도론적 연구)

  • Jun, Hyun Chul;Oh, Sea Cheon;Lee, Hae Pyeong;Kim, Hee Taik
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.296-302
    • /
    • 2006
  • The kinetics of the thermal-oxidative decomposition of waste polyurethane (PU) according to oxygen concentration has been studied using a non-isothermal thermogravimetric technique at several heating rates from 10 to $50^{\circ}C/min$. A kinetic model accounting for the effects of the oxygen concentration by the differential and integral method based on Arrhenius equation was proposed to describe the thermal-oxidative decomposition of waste PU. To obtain the information on the kinetic parameters such as activation energy, reaction order, and pre-exponential factor, the thermogravimetric analysis curves and its derivatives have been analyzed using the kinetic analysis method proposed in this work. From this work, it was found that reaction orders for oxygen concentration had a negative sign, and activation energy decreased as the oxygen concentration increased. It was also found that the kinetic parameters obtained from the integral method using the single heating rate experiments varied with heating rates. Therefore, it is thought that the differential method using the multiple heating rate experiments more effectively represents the thermal-oxidative decomposition of waste polyurethane.

Studies on Cure Kinetics and Rheological Properties of Difunctional Epoxy/Polysulfone Blend System (이관능성 에폭시/폴리썰폰 블렌드의 경화 동력학 및 유변학적 특성에 관한 연구)

  • 박수진;김현철;이재락
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.177-185
    • /
    • 2001
  • In this work, the cure kinetics and rheological properties of difunctional epoxy(diglycidylether of bisphenol A, DGEBA)/polysulfone (PSF) blends were investigated using differential scanning calorimeter and rheometer. From the DSC results of the blends, the temperature of the exothermic peak and cure activation energy (E) using a half-width method were increased with increasing the PSF content to neat epoxy resin up to 30 wt%. However, a marginal decrease in the blend system was shown in E. The conversion ($\alpha$) and conversion rate (d$\alpha$/dt) were decreased as the content of PSF increases. Rheological properties of the blend system were investigated under isothermal condition using a rheometer. Cross-linking activation energy (E$_{c}$) was determined from the Arrhenius equation based on gel time and curing temperature. As a result, the E$_{c}$ showed a similar behavior with E which could be resulted from high viscosity of PSF and the phase separation between DGEBA and PSF.PSF.f PSF and the phase separation between DGEBA and PSF.PSF.

  • PDF

Studies on Cure Behavior and Rheological Properties of Tetrafunctional Epoxy/Biodegradable MAP Blends (4관능성 에폭시/생분해성 MAP 블렌드의 경화 거동 및 유변학적 특성에 관한 연구)

  • 박수진;김승학;이재락;김봉섭;홍성원
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.767-777
    • /
    • 2002
  • In this work, biodegradable modified aliphatic polyester (MAP) in tetrafunctional epoxy (4EP) resin was investigated in terms of cure kinetics, thermal stabilities, rheological properties, and mechanical interfacial properties. DSC results of the blends show that the cure activation energies (E$\_$a/) were increased in 10 wt% of MAP compared with neat 4EP, due to the increasing intermolecular interaction between 4EP and MAP. The decomposed activation energies (E$\_$t/) derived from Coats-Redfern method, were increased within the 10∼30 wt% composition range of MAP contents, resulting from increasing the cross-linking density of the blend system. Rheological properties of the blend system were investigated under isothermal condition using a rheometer. Cross-linking activation energies (E$\_$c/) were determined from the Arrhenius equation based on gel time and curing temperature. As a result, the E$\_$c/ showed a similar behavior with E$\_$a/. The fracture toughness (K$\_$IC/) of the mechanical interfacial properties was discussed in semi-IPN behaviors of the casting specimen.

Effect of Antioxidant Addition on Milk Beverage Supplemented with Coffee and Shelf-life Prediction

  • Kim, Gur-Yoo;Lee, Jaehak;Lim, Seungtae;Kang, Hyojin;Ahn, Sung-Il;Jhoo, Jin-Woo;Ra, Chang-Six
    • Food Science of Animal Resources
    • /
    • v.39 no.6
    • /
    • pp.903-917
    • /
    • 2019
  • This study aimed to extend the shelf-life of coffee-containing milk beverage by adding Theobroma cacao (cacao nibs) extract. To prepare the beverage sample containing cacao nibs extract, 0.8% cacao nibs hydrothermal extract was aseptically injected. Qualitative changes in the beverage samples, including antioxidant effect, peroxide value (POV), caffeine content, and sensory parameters were monitored regularly during storage at 10℃, 20℃, and 30℃ for 4 wk. The inclusion of cacao nibs extract produced higher antioxidant activity compared to the control. As the storage temperature increased, the POV of all samples increased. Samples with cacao nibs extract generally displayed lower POV than the control. The caffeine content of all samples tended to decrease during storage, with the decrease accentuated by higher storage temperatures. In the shelf-life prediction using the Arrhenius model, the kinetic regressions of the cacao nibs extract-added sample and control were YPOV=1.2212X-2.1141 (r2=0.9713) and YPOV=1.8075X-2.0189 (r2=0.9883), respectively. Finally, the predicted shelf-life of cacao nibs-added group and control to reach the quality limit (20 meq/kg POV) were approximately 18.11 and 12.18 wk, respectively. The results collectively indicate that the addition of cacao nibs extract extends the shelf-life of the coffee-containing milk beverage and heightened the antioxidant effect.

Effect of Heating Temperature on Viscosity of Starch Dough (전분반죽의 점도에 미치는 가열온도의 영향)

  • Lee, Boo-Yong;Lee, Chang-Ho;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.593-597
    • /
    • 1995
  • To measure theological properties of the starch dough, an Extrusion Capillary Viscometer(ECV) cell was self-made and attached to Instron machine(Model 1140). Apparent viscosities of corn and waxy corn starch doughs were measured and their gelatinization degrees were determined by enzymatic analysis. The effects of heating temperature on the viscosity of starch dough with $36{\sim}52%$ moisture contents were examined in terms of Arrhenius equation. The activation emergy(Ea) of the dough viscosity from the effect of heating temperatures changed from negative(-) to positive(+), as the moisture content increased from 44% to 48% in the corn starch dough and from 44% to 44% in the waxy corn starch dough.

  • PDF

Flow Properties of Red Flower Cabbage Pigment Solutions (꽃양배추 색소 추출액의 유동특성)

  • Rhim, Jong-Whan;Lee, Jung-Ju
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.221-225
    • /
    • 2001
  • Flow properties of red flower cabbage pigment solutions were determined over a wide range of temperatures ($20-50^{\circ}C$) and soluble solid concentrations (1-65%) using a cone and plate rotational viscometer. Flow properties of the pigment solutions were adequately described by the simple power law model. Within the tested ranges of concentration, temperature and shear rate, the flow behavior index (n) and the consistency index (K) of the solutions were in the ranges of 0.841-0.998 and $0.008-31.525\;Pa{\cdot}s^n$, respectively. The effect of temperature on the apparent viscosity of the solutions followed an Arrhenius type relationship. Activation energy of flow varied from 9.36 to 52.48 kJ/mol depending on the solid concentration and shear rate. The combined effect of temperature and concentration on the apparent viscosity at the shear rate of $100\;s^{-1}$ could be represented by a single equation as ${\ln}\;{\eta}_a\;=\;6.11\;-\;3103.94(1/T)\;-\;0.03C$.

  • PDF

Decomposition of Guanosine-5’-Monophosphate by Heat Treatment (구아닌 산의 열(熱) 분해(分解)에 관(關)한 연구(硏究))

  • Lee, Jae-Heung;Ko, Jung-Hwan;Kim, Hong-Jip;Bae, Jong-Chan;Yu, Ju-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.188-191
    • /
    • 1979
  • The heat decomposition rate of guanosine-5'-monophosphate was investigated in pH range from 5.52 to 7.00, and 0.1 of the ionic strength. The result showed that the rate was a first-order reaction and the rate of guanosine-5'-monophosphate loss was maximum near $pKa_2$. The loss of guanosine-5'-monophosphate was temperature dependent and followed to the Arrhenius equation in the temperature region from $93^{\circ}C$ to $108^{\circ}C$. The rate constant as function of temperature ($93^{\circ}C$ to $108^{\circ}C$) and neutral pH($pKa_2$, 6.0, to 7.0) was correlated by least-square fit of the experimental data; $$K=4.19{\times}10^{26}\;{\exp}\;[-1.3(pH+E/RT)]$$

  • PDF