• Title/Summary/Keyword: Arrhenius 인자

Search Result 34, Processing Time 0.02 seconds

Long-Term Performance Prediction of Carbon Fiber Reinforced Composites Using Dynamic Mechanical Analyzer (동적기계분석장치를 이용한 탄소섬유/에폭시 복합재의 장기 성능 예측)

  • Cha, Jae Ho;Yoon, Sung Ho
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.78-84
    • /
    • 2019
  • This study focused on the prediction of the long-term performance of carbon fiber/epoxy composites using Dynamic Mechanical Analysis (DMA) and Time-Temperature Superposition (TTS). Single-frequency test, multi-frequency test, and creep TTS test were performed. A sinusoidal load of $20{\mu}m$ amplitude was applied while increasing the temperature from $-30^{\circ}C$ to $240^{\circ}C$ at $2^{\circ}C/min$ for the single-frequency test and the multi-frequency test. The frequencies applied to the multi-frequency test were 0.316, 1, 3.16, 10 and 31.6 Hz. In the creep TTS test, a stress of 15 MPa was applied for 10 minutes at every $10^{\circ}C$ from $-30^{\circ}C$ to $230^{\circ}C$. The glass transition temperature was determined by single-frequency test. The activation energy and the storage modulus curve for each temperature were obtained from glass transition temperature for each frequency by the multi-frequency test. The master curve for the reference temperature was obtained by applying the shift factor using the Arrhenius equation. Also, TTS test was used to obtain the creep compliance curves for each temperature and the master curve for the reference temperature by applying the shift factors using the manual shift technique. The master curve obtained through this process can be applied to predict the long-term performance of carbon fiber/epoxy composites for a given environmental condition.

A Reaction Kinetic Study of CO2 Gasification of Petroleum Coke, Biomass and Mixture (석유 코크스, 바이오매스, 혼합연료의 이산화탄소 가스화 반응 연구)

  • Kook, Jin Woo;Shin, Ji Hoon;Gwak, In Seop;Lee, See Hoon
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.184-192
    • /
    • 2015
  • Characteristics of Char-$CO_2$ gasification for petroleum coke, biomass and mixed fuels were compared in the temperature range of $1,100{\sim}1,400^{\circ}C$ using TGA (Thermogravimetric analyzer). Kinetic constants with respect to reaction temperature were determined by using different gas-solid reaction models. Also activation energy (Ea) and pre-exponential factors ($K_0$) in each models were calculated by using Arrhenius equation and then were compared with experimental values to determine reaction rate equation for char-$CO_2$ gasification. Reaction time for $CO_2$ gasification decreased with an increase of reaction temperature. Also, the activation energy of $CO_2$ gasification reaction for mixture with petroleum coke and biomass decreased with increasing biomass contents. This indicates that mixing with biomass could bring synergy effects on $CO_2$ gasification reaction.

Kinetic Models for the Quality Factors of Banana by Different Dehydration Methods (바나나의 건조방법(乾燥方法)에 따른 품질변화(品質變化) 인자(因子)에 대한 반응속도(反應速度) 모델링)

  • Kim, Su Yeon;Choi, Yong Hee
    • Current Research on Agriculture and Life Sciences
    • /
    • v.7
    • /
    • pp.175-184
    • /
    • 1989
  • Kinetics of ascorbic acid and browning that may use on the optimization of food dehydration were evaluated. Banana was chosen for this as the representative test material. We have described the destruction of ascorbic acid and browning as first and zero order reactions. The temperature dependence between two reactions were conducted with Arrhenius equation. Finally we have operated SPSS computer programs reapeatedly that we found very dose value of the parameter between result of ascorbic acid and browning. The attained Kinetic models were well prepared for the value of result experiments and the models may use on optimization for dehydration progress. Destruction rate of ascorbic acid and browning rate were low at initiation of progress, increased to show maximum at the low moisture on mid-progress and then decreased gradually. Freeze drying showed the most constant quality of product in this case.

  • PDF

Studies on Rheological Properties and Cure Behaviors of Difunctional Epoxy/Biodegradable Poly(butylene succinate) Blends (2관능성 에폭시/생분해성 폴리부틸렌 숙시네이트 블렌드의 유변학적 특성 및 경화거동에 관한 연구)

  • 박수진;김승학;이재락;민병각
    • Composites Research
    • /
    • v.15 no.6
    • /
    • pp.8-15
    • /
    • 2002
  • In this work, the effect of biodegradable poly(butylene succinate)(PBS) in difunctional epoxy(21:P) resin was investigated in terms of rheological properties, cure kinetics, thermal stabilities, and mechanical interfacial properties. Rheological properties of the blend system were measured under isothermal condition using a rheometer. Cross-linking activation energies($\textrm{E}_c$) were determined from the Arrhenius equation based on gel time and curing temperature. The $\textrm{E}_c$ was increased in the presence of 10 wt% PBS as compared with neat 2EP. From the DSC results of the blends, the cure activation energies($\textrm{E}_a$) showed a similar behavior with $\textrm{E}_c$ due to the increased intermolecular interaction between 2EP and PBS. The decomposed activation energies($\textrm{E}_t$) for the thermal stability derived from the integral method of Horowitz-Metzger equation, were also increased in 10 wt% PBS. In addition, 20 wt% PBS showed the highest critical stress intensity factor($\textrm{E}_{IC}$). which was explained by increasing the fracture toughness of the 2EP/PBS blend systems.

Char Oxidation Characteristics of Ashless Coal in Drop Tube Furnace (DTF를 이용한 초청정 석탄 촤 산화 반응률 특성 연구)

  • Kim, Sang-In;Lee, Byoung-Hwa;Lim, Ho;Yu, Da-Yeon;Lee, Si-Hyun;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.675-681
    • /
    • 2012
  • The char oxidation characteristics of ashless coal with a relatively low ash content and high heating value were experimentally investigated at several temperatures (from $900^{\circ}C$ to $1300^{\circ}C$), in various oxygen concentrations (from 10% to 30%) under atmospheric pressure in a drop tube furnace. The char reaction rate was calculated from the exhaust gas concentrations (CO, $CO_2$) measured by FT-IR, and the particle temperature was measured by the two-color method. In addition, the activation energy and pre-exponential factor of ashless coal char were also calculated based on the Arrhenius equation. The results show that higher temperature and oxygen concentration result in a higher reaction rate of ashless coal, and the activation energy of ashless coal char is similar to that of bituminous coal.

A Kinetic Study of Thermal-Oxidative Decomposition of Waste Polyurethane (폐폴리우레탄의 열적 산화분해에 대한 속도론적 연구)

  • Jun, Hyun Chul;Oh, Sea Cheon;Lee, Hae Pyeong;Kim, Hee Taik
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.296-302
    • /
    • 2006
  • The kinetics of the thermal-oxidative decomposition of waste polyurethane (PU) according to oxygen concentration has been studied using a non-isothermal thermogravimetric technique at several heating rates from 10 to $50^{\circ}C/min$. A kinetic model accounting for the effects of the oxygen concentration by the differential and integral method based on Arrhenius equation was proposed to describe the thermal-oxidative decomposition of waste PU. To obtain the information on the kinetic parameters such as activation energy, reaction order, and pre-exponential factor, the thermogravimetric analysis curves and its derivatives have been analyzed using the kinetic analysis method proposed in this work. From this work, it was found that reaction orders for oxygen concentration had a negative sign, and activation energy decreased as the oxygen concentration increased. It was also found that the kinetic parameters obtained from the integral method using the single heating rate experiments varied with heating rates. Therefore, it is thought that the differential method using the multiple heating rate experiments more effectively represents the thermal-oxidative decomposition of waste polyurethane.

Theoretical Approach of the Quartz Dissolution Rate under Various Temperature, pH and Applied Stress Conditions (다양한 온도, pH, 압력 조건하에서의 석영용해속도에 대한 이론적 접근)

  • Choi, Junghae
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.509-515
    • /
    • 2017
  • Quartz is the most abundant mineral in the Earth's continental crust. Therefore, understanding of quartz dissolution and precipitation is very important to know about weathering processes and interactions between rocks and water in hydrothermal and metamorphic environments. This paper presents a basic review on the research about quartz dissolution mechanism under various physico-chemical conditions. We rearranged the relationship between each physico-chemical factor and dissolution mechanism from the results of previous researchers in this paper. From this result, we understood that quartz dissolution and precipitation are affected by each factor such as temperature, pH, and applied stress conditions at contact point. In particular, we recognized that the high pH and temperature conditions have different anion concentrations on mineral's surface. As a result, high pH and temperature conditions have a better effect than applied stress condition to the quartz dissolution mechanism.

Separation Characteristics of $CH_4-CO_2$ Gas Mixture through Hollow Fiber Membrane Module (Hollow Fiber 막모듈을 이용한 $CH_4-CO_2$ 혼합기체의 분리특성)

  • Kim, Jin-Soo;Ahn, June-Shu;Lee, Sung-Moo
    • Membrane Journal
    • /
    • v.4 no.4
    • /
    • pp.197-204
    • /
    • 1994
  • In this study, permeation characteristics of pure $CH_4,\;CO_2$ and $CH_4/CO_2$ gas mixture were examined by permeation experiments through hollow fiber membrane module and experimental results were compared with simulation results. Permeation rate of pure gas increased with increaseing temperature in Arrhenius type. Activation energy was 6.61 kJ/mol for $CO_2$ and 25.26 kJ/mol for $CH_4$. In the permeation experiment of gas mixture, permeate flow rate and $CO_2$ concentration in permeate decreased and $CH_4$ concentration in reject increased with the increase of cut. Separation factor was in the range of 20~40 at 5~20 atm and 20% cut and it increased with pressure and against temperature Experimental values corresponded to numerical values with the deviation of 8% in permeate flow rate and $CO_2$ concentration in permeate and 15% in $CO_2$ concentration in reject.

  • PDF

Post-cure Condition of a Silicone Rubber Material for a LCD Lamp Holder (LCD 램프홀더용 실리콘고무재료의 후가교 조건)

  • Ahn, Won-Sool;Lee, Joon-Man
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1661-1667
    • /
    • 2009
  • Post-cure characteristics of a silicone rubber material which is widely used for a LCD lamp holder were investigated using thermogravimetric analysis (TGA). Research was especially focussed on searching for the optimum post-cure conditions in relation to the practical operation environments. The results showed that incipient volatile temperature(Ti) during the process was considered as the most important factor and, thereby, post-curing for 2hrs at $250^{\circ}C$seemed to be a reasonable condition in the practical view-point. Arrhenius plot of shift factors which were empirically determined from the time-temperature-superposition-principle showed good linearity, exhibiting the post-cure mechanism might be proceeded through single mechanism with activation energy of 108.25kJ/mol.

Influencing Factors in Drying Characteristics of Fluidized Bed Drying of Husked Barley (겉보리의 유동층 건조특성에 영향을 미치는 인자)

  • Kim, Hee-Yun;Han, Sang-Bae;Kwon, Yong-Kwan;Lee, Kwang-Ho;Jung, Chung-Sung;Ha, Sang-Chul;Kim, Sung-Tae;Song, Seung-Koo;Cho, Jae-Sun;Hur, Jong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.706-713
    • /
    • 2001
  • The influencing factor in drying characteristics of fluidized bed drying with different drying conditions for husked barley were carried out. This fluidized drying mechanism of husked barley was consisted of consecutive two falling rate parts, first falling rate period and second falling rate period without showing constant rate period. The drying rate constant was increased with decreasing charged amount and relative humidity and increasing air temperature and air velocity. Since the drying rate constant expressed by Arrhenius type equation in the falling rate period showed good linearity, the falling rate period was condsidered as the controlling step. The activation energy of first falling step was 1,100 cal/gmol, while for second falling step the values showed 1,600 cal/gmol.

  • PDF