• Title/Summary/Keyword: Aromatic yield

Search Result 158, Processing Time 0.022 seconds

Reaction of Bis(diethylamino)aluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • Jin Soon Cha;Oh Oun Kwon;Jong Mi Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.2
    • /
    • pp.132-138
    • /
    • 1994
  • Bis(diethylamino)aluminum hydride was utilized in a systematic study of the approximate rates and stoichiometry of the reaction of excess reagent with 55 selected organic compounds containing representative functional groups under standardized conditions (THF, $0^{\circ}C$, reagent to compound=4 : 1) in order to define the characteristics of the reagent for selective reductions. The reducing action of BEAH was also compared with that of the parent aluminum hydride. The reducing action of the reagent is quite similar to that of aluminum hydride, but the reducing power is much weaker. Aldehydes and ketones were readily reduced in 1-3 h to the corresponding alcohols. However, unexpectedly, a ready involvement of the double bond in cinnamaldehyde was realized to afford hydrocinnamyl alcohol. The introduction of diethylamino group to the parent aluminum hydride appears not to be appreciably influential in stereoselectivity on the reduction of cyclic ketones. Both p-benzoquinone and anthraquinone utilized 2 equiv of hydride readily without evolution of hydrogen, proceeded cleanly to the 1,4-reduction products. Carboxylic acids and acid chlorides underwent reduction to alcohols slowly, whereas cyclic anhydrides utilized only 2 equiv of hydride slowly to the corresponding hydroxylacids. Especially, benzoic acid with a limiting amount of hydride was reduced to benzaldehyde in a yield of 80%. Esters and lactones were also readily reduced to alcohols. Epoxides examined all reacted slowly to give the ring-opened products. Primary and tertiary amides utilized 1 equiv of hydride fast and further hydride utilization was quite slow. The examination for possibility of achieving a partial reduction to aldehydes was also performed. Among them, benzamide and N,N-dimethylbenzamide gave ca, 90% yields of benzaldehyde. Both the nitriles examined were also slowly reduced to the amines. Unexpectedly, both aliphatic and aromatic nitro compounds proved to be relatively reactive to the reagent. On the other hand, azo- and azoxybenzenes were quite inert to BEAH. Cyclohexanone oxime liberated 1 equiv of hydrogen and utilized 1 equiv of hydride for reduction, corresponding to N-hydroxycyclohexylamine. Pyridine ring compounds were also slowly attacked. Disulfides were readily reduced with hydrogen evolution to the thiols, and dimethyl sulfoxide and diphenyl sulfone were also rapidly reduced to the sulfides.

Application of Dynamic Regulation to Increase L-Phenylalanine Production in Escherichia coli

  • Wu, Jie;Liu, Yongfei;Zhao, Sheng;Sun, Jibin;Jin, Zhaoxia;Zhang, Dawei
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.923-932
    • /
    • 2019
  • Current strategies of strain improvement processes are mainly focused on enhancing the synthetic pathways of the products. However, excessive metabolic flux often creates metabolic imbalances, which lead to growth retardation and ultimately limit the yield of the product. To solve this problem, we applied a dynamic regulation strategy to produce $\text\tiny{L}$-phenylalanine ($\text\tiny{L}$-Phe) in Escherichia coli. First, we constructed a series of Phe-induced promoters that exhibited different strengths through modification of the promoter region of tyrP. Then, two engineered promoters were separately introduced into a Phe-producing strain xllp1 to dynamically control the expression level of one pathway enzyme AroK. Batch fermentation results of the strain xllp3 showed that the titer of Phe reached 61.3 g/l at 48 h, representing a titer of 1.36-fold of the strain xllp1 (45.0 g/l). Moreover, the $\text\tiny{L}$-Phe yields on glucose of xllp3 (0.22 g/g) were also greatly improved, with an increase of 1.22-fold in comparison with the xllp1 (0.18 g/g). In summary, we successfully improved the titer of Phe by using dynamic regulation of one key enzyme and this strategy can be applied for improving the performance of strains producing other aromatic amino acids and derived compounds.

Effect of Planting Patterns on the Cultivation of Eggplant (Solanum melongena) and Marigold (Tagetes erecta) for the Activation of Eco-Friendly Rooftop Urban Agriculture (친환경 옥상 도시농업 활성화를 위한 배식모형에 따른 가지(Solanum melongena)와 메리골드(Tagetes erecta) 식재효과)

  • Jae-Hyun Park;Sang-Il Seo;Deuk-Kyun Oh;Yong-Han Yoon;Jin-Hee Ju
    • Journal of Environmental Science International
    • /
    • v.33 no.6
    • /
    • pp.417-425
    • /
    • 2024
  • This study investigated the effects of various planting models on the joint cultivation of eggplant (Solanum melongena) and marigold (Tagetes erecta)to enhance sustainable rooftop urban farming. Rooftop agriculture is increasingly valued to boost the food supply and benefit the environment. Integrating such practices into urban planning is viewed as a way to sustainably manage resources and improve the food-energy-water cycle in cities. The experiment was conducted on a rooftop in Chungju, South Korea from May to August. Four different planting setups were used: central eggplant with peripheral marigold (SET), eggplant with a protective net (SIC), central marigold with peripheral eggplant (TES), and control with only eggplant (CON S). These models tested the effects of companion planting versus monoculture using a lightweight soil mix ideal for rooftops made from cocopeat and perlite and enriched with organic fertilizer. Measurements focused on soil conditions and plant health and assessed soil temperature, moisture, conductivity, plant height, width, and leaf size. The results indicated that the SET modelyielded the best growth. This setup benefited from marigold pest control properties and its ability to improve soil conditions by enhancing moisture and nutrient levels and aiding eggplant growth. These findings underscore the potential of mixed planting on rooftops and suggest that such approaches can be effectively incorporated into urban agriculture to boost yield and environmental sustainability. This study supports the idea that diverse planting methods can significantly affect plant growth and promote urban greening and food security.

Tryptophan-Based Hyperproduction of Bioindigo by Combinatorial Overexpression of Two Different Tryptophan Transporters

  • Hyun Jin Kim;Sion Ham;Nara-Shin;Jeong Hyeon Hwang;Suk Jin Oh;Tae-Rim Choi;Jeong Chan Joo;Shashi Kant Bhatia;Yung-Hun Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.969-977
    • /
    • 2024
  • Indigo is a valuable, natural blue dye that has been used for centuries in the textile industry. The large-scale commercial production of indigo relies on its extraction from plants and chemical synthesis. Studies are being conducted to develop methods for environment-friendly and sustainable production of indigo using genetically engineered microbes. Here, to enhance the yield of bioindigo from an E. coli whole-cell system containing tryptophanase (TnaA) and flavin-containing monooxygenase (FMO), we evaluated tryptophan transporters to improve the transport of aromatic compounds, such as indole and tryptophan, which are not easily soluble and passable through cell walls. Among the three transporters, Mtr, AroP, and TnaB, AroP enhanced indigo production the most. The combination of each transporter with AroP was also evaluated, and the combination of AroP and TnaB showed the best performance compared to the single transporters and two transporters. Bioindigo production was then optimized by examining the culture medium, temperature, isopropyl β-D-1-thiogalactopyranoside concentration, shaking speed (rpm), and pH. The novel strain containing aroP and tnaB plasmid with tnaA and FMO produced 8.77 mM (2.3 g/l) of bioindigo after 66 h of culture. The produced bioindigo was further recovered using a simple method and used as a watercolor dye, showing good mixing with other colors and color retention for a relatively long time. This study presents an effective strategy for enhancing indigo production using a combination of transporters.

Decomposition Characteristics of Raw Rubber and Tire by Thermal Degradation Process (열분해 공정을 이용한 원료고무와 타이어의 분해 특성)

  • Kim, Won-Il;Kim, Hyung-Jin;Jung, Soo-Kyung;Hong, In-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1052-1060
    • /
    • 1999
  • Tire and raw material of tire, i.e., SBR were degraded using pyrolysis process. The yield of pyrolytic oil was increased and that of gas was decreased with increase of operating temperature in pyrolysis. And the yield of pyrolytic oil was increased and that of gas and char was decreased with increase of heating rate. The maximum oil yields of SBR and tire were 86% and 55% each at $700^{\circ}C$ with a heating rate of $20^{\circ}C/min$. The number average molecular weight ranges of SBR and tire were 740~2486, 740~1719, and the calorific value of SBR and tire was 39~40 kJ/g. The oil components were consisted of mostly 50 aromatic compounds. The particle size was decreased and the surface area was increased with increase of operating temperature, and the BET surface area was $47{\sim}63m^2/g$. The optimum condition of pyrolysis was the temperature of $700^{\circ}C$ with heating rate of $20^{\circ}C$, and the reactor was continuously purged with inert gas to sweep the evolved gases from the reaction zone.

  • PDF

Reaction of Phosphorus Ylides with Carbonyl Compounds in Supercritical Carbon Dioxide (초임계 이산화탄소에서의 유기인 일리드와 카르보닐 화합물의 반응)

  • Jeong, Kyung-Il;Kim, Hak-Do;Shim, Jae-Jin;Ra, Choon-Sup
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.1
    • /
    • pp.28-32
    • /
    • 2004
  • The condensation reaction of (benzylene)triphenylphosphoranes with carbonyl compounds in supercritical carbon dioxide was examined. Reactions of (benzylene)phosphoranes (ca. 1 mmol) with several benzaldehydes in a supercritical carbon dioxide (80 $^{\circ}C$, 2,000 psi) containing THF entrainer (5%) in a 24 mL reactor proceed smoothly to yield olefination products in fairly good to excellant yields but slower, compared to reactions in a conventional THF solvent. Generally, phosphoranes that are not substituted with a nitro group show more (Z)-selective reactions with aromatic aldehydes under $scCO_2$ condition than in THF. The reaction of (benzylene)triphenylphosphoranes with 4-t-butylcyclohexanone gave the corresponding olefin compounds with a low conversion under both the supercritical carbon dioxide and the organic THF solvent. Our preliminary study showed the Wittig reaction carries out smoothly in supercritical carbon dioxide medium and also a possibile tunability of this reaction pathway by adding a entrainer. The results would be useful for devising a novel process for the environmentally friendly Wittig reaction.

The Cracking Reaction of Vacuum Gas Oil on Mordenite Modified by HF and Steaming (불화수소산과 스팀처리한 모더나이트상에서 진공가스유의 분해반응)

  • Lee, Kyong-Hwan;Ha, Baik-Hyon
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.925-937
    • /
    • 1996
  • Three types of mordenites treated by steaming($SM_{6.5}$), HF solution for $SM_{6.5}(FM_a)$ and HF solutlon+steaming for $SM_{6.5}(FM_b)$ were prepared and used as cracking catalysts of vacuum gas oil. These samples were analysed by XRF and XPS for average and surface Si/Al atomic ratio, XRD for unit cell constants, nitrogen adsorption/desorption for porosity, pyridine-IR for acidic properties. In comparison with three type samples, $SM_{6.5}$ had a lot of acid amount and showed micropore volume mostly(>85% to total volume). Dealuminated $FM_a$, compared with $SM_{6.5}$, was decreased a little in acid amount and improved for porosity. Also, $FM_b$ was decreased further in acid amount and developed in mesopore dramatically. The catalytic activity and the yield of gasoline, kerosine+diesel and branched aromatic over the modified mordenites which have developed mesopore were improved. This is due to limited access of diffusion of large molecules within pore of the modified mordenites.

  • PDF

Synthesis of Pitch from PFO, Byproduct of Naphtha Cracking Process Using UV Irradiation and AlCl3 Catalyst (나프타 분해공정 부산물인 PFO로부터 UV 조사와 AlCl3 촉매 첨가를 이용한 피치의 합성)

  • Jung, Min-Jung;Ko, Yoonyoung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.224-228
    • /
    • 2015
  • The carbon precursor pitch from pyrolyzed fuel oil (PFO), by-product of Naphta cracking process (NCC), was prepared through heat and UV irradiation treatments with various concentrations of $AlCl_3$, which is a new pitch preparation method. The reformed pitches were characterized by measuring their elemental composition, chemical structure of components, molecular weight distribution, and softening point. The oxygen contents of reformed pitch increased as increasing $AlCl_3$ amounts on the other hand, the carbon and hydrogen contents were not nearly changed. UV irradiated reformed pitches were composed of more aromatic carbon compounds than that of using only heat-treatment without any UV irradiation. The addition of $AlCl_3$ catalyst was ineffective on the aromaticity of reformed pitches. The softening point of prepared pitches was in the range of $103.3{\sim}168.9^{\circ}C$. Also the yield of prepared pitch increased from 48% to 80% when 5 wt% of $AlCl_3$ was added during the heat and UV irradiation reforming. It is expected that the UV irradiation reforming method can be practical and helpful to produce high yields of pitches with diverse properties.

Ruthenium Complex Catalyzed Reaction of Diols or Triol with Amines (루테늄 착물 촉매를 이용한 디올 및 트리올과 아민과의 반응)

  • Sang Chul Shim;Young Zoo Youn;Jae Wook Lee;Dong Yeob Lee;Jae Goo Shim;Ju Hee Kim;Keun Tae Huh
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.11
    • /
    • pp.967-973
    • /
    • 1993
  • ${\alpha},{\omega}$-Diols such as 1,6-hexanediol and 1,7-heptanediol react with secondary amines in the presence of catalytic amount of ruthenium complex at 180$^{\circ}$C for 24 hrs to give the corresponding diamino compounds in good yields. The yield of diamino compound was affected by the molar ratio of ${\alpha},{\omega}$-diol to secondary amine. The reaction was also affected by the nature of the phosphorus ligands employed. On the other hand, aromatic primary amines react with 1,2,6-hexanetriol in the presence of RuCl_3{\cdot}H_2O-3PPh_3$ at 180$^{\circ}$C for 3 hours under argon atmosphere to give selectively 1-substituted aryl-3-hydroxyperhydroazepines in good yields. Selective synthesis of these products show that two primary hydroxy groups (1,6-positions) oxidize predominantly than secondary hydroxy group (2-position) by ruthenium-phosphorus complex. The yields were decreased according to the order of para-, meta- and ortho-substituent.

  • PDF

Synthesis and Characterization of Novel Polythiourethanes (새로운 폴리(티오우레탄)의 합성 및 특성)

  • 김경만;허영태;박인환;이범재
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.470-476
    • /
    • 2003
  • In order to obtain high refractive plastic materials, 1,2 -ethylenedisulfanylbis(2-mercaptomethyl-1-ethanthiol) (ESTT) was newly prepared in good yield by the reaction of 1,2-ethylenedisulfanylbis(2-bromomethyl-1-ethanthiol) (ESTB) with thiourea followed by hydrolysis using an aqueous ammonia solution and characterized by $^1$H-NMR (-SH at 1.7 ppm), $\^$13/C-NMR(-CH$_2$SH at 28.4 ppm) and FT-IR (-SH at 2540 cm$\^$-1/) spectroscopy, etc. Polythiourethanes (PTU) were obtained from the combinations of ESTT with each of 4,4'-methylenebis(phenylisocyanate) (MDI), tolyene 2,4-diisocyanate (TDI), isophorone diisocyanate (IPDI), mxylene diisocyanate (XDI), and 1,6-diisocyanatohexane (HMDI) in the presence of dibutyltin dilaurylate as a catalyst, in a casting mold, and characterized by FT-IR (existence of N=C=O) spectroscopy and elemental analyzer (sulfur content). Accordingly, their thermal, mechanical and optical properties were investigated by using DSC, TGA, hardness tester and refractometer: both the melting point on DSC and crystallinity on X -ray diffraction (XRD) for specimens of PTUs were not observed. PTUs with T$\_$g/s above 110 $^{\circ}C$ showed good hardness (Shore D) in the range of 86 to 89. Thermal stabilities of PTUs obtained by using ESTT and each of diisocyanates containing aromatic rings were especially good. Also, the optical transmittances of amorphous PTUs through UV-visible source in the range of 400 to 600 nm were good. PTUs showed refractive indexes above 1.60, and their refractive indexes gradually increased with increase of sulfur contents.