• 제목/요약/키워드: Aromatic nitriles

검색결과 21건 처리시간 0.026초

Catecholalane (1,3,2-Benzodioxaluminole) as a Selective Reducing Agent

  • 차진순;장석원;이지은;김종미;권오운;이형수;송한철
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권8호
    • /
    • pp.720-724
    • /
    • 1996
  • Catecholalane (1,3,2-Benzodioxaluminole, CA) prepared from catechol and aluminum hydride in tetrahydrofuran (THF) is found to be a selective reducing agent. The systematic study in order to characterize the reducing properties of the reagent under practical conditions (THF, 0 or 25 ℃, the quantitative amount of reagent to compound) has been done. The reagent reduces aldehydes, ketones, esters and acid chlorides to the corresponding alcohols, and primary amides to the corresponding amines. Especially noteworthy is that the reagent can convert both aromatic and aliphatic nitriles to the corresponding aldehydes in very high yields.

A New Combined Source of "CN" from N,N-Dimethylformamide and Ammonia in the Palladium-Catalyzed Cyanation of Aryl C-H Bonds

  • Choi, Ji-Ho;Kim, Jin-Ho;Chang, Suk-Bok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.207-207
    • /
    • 2011
  • Aromatic nitriles possess versatile utilities and are indispensible not only in organic synthesis but also in chemical industry. In fact, the nitrile group is an important precursor for various functional groups such as aldehydes, amines, amidines, tetrazoles, amides, and their carboxyl derivatives. Representative methods for the preparation of organonitriles with cyanide-containing reagents are the Sandmeyer and Rosenmund-von Braun reactions. Recently, a catalytic route to aryl nitriles has been reported on the basis of the chelation-assisted C-H bond activation or metal-catalyzed cyanation of haloarenes. In those cyanation protocols, the "CN" unit is provided from metal-bound precursors of MCN (M=Cu, K, Na, Zn), TMSCN, or K3Fe(CN)6. Additionally, it can be generated in situ from nitromethane or acetone cyanohydrin. Herein, we report the first example of generating "CN" from two different, readily available precursors, ammonia and N,N-dimethylformamide (DMF). In addition, its synthetic utility is demonstrated through the Pd-catalyzed cyanation of arene C-H bonds.

  • PDF

Selective Reduction by Lithium Bis-or Tris(dialkylamino)-aluminum Hydrides. II. Reaction of Lithium Tris(dibutylamino)-aluminum Hydride with Selected Organic Compounds Containing Representative Functional Groups

  • Cha, Jin-Soon;Lee, Sung-Eun;Lee, Heung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권6호
    • /
    • pp.644-649
    • /
    • 1991
  • The approximate rates and stoichiometry of the reaction of excess lithium tris(dibutylamino)aluminum hydride (LT-DBA) with selected organic compounds containing representative functional groups under standardized conditions (tetrahydrofuran, $0^{\circ}C$) were studied in order to characterize the reducing characteristics of the reagent for selective reductions. The reducing ability of LTDBA was also compared with those of the parent lithium aluminum hydride and the alkoxy derivatives. The reagent appears to be much milder than the parent reagent, but stronger than lithium tri-t-butoxyaluminohydride in reducing strength. LTDBA shows a unique reducing characteristics. Thus, the reagent reduces aldehydes, ketones, esters, acid chlorides, epoxides, and amides readily. In addition to that, ${\alpha},{\beta}$-unsaturated aldehyde is reduced to ${\alpha},{\beta}$-unsaturated alcohol. Quinones are reduced to the corresponding diols without evolution of hydrogen. Tertiary amides and aromatic nitriles are converted to aldehydes with a limiting amount of LTDBA. Finally, disulfides and sulfoxides are readily reduced to thiols and sulfides, respectively, without hydrogen evolution.

Reaction of Dipyrrolidinoaluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • Jin Soon Cha;Oh Oun Kwon;Jong Mi Kim;Jae Cheol Lee
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권8호
    • /
    • pp.644-649
    • /
    • 1994
  • The approximate rates and stoichiometry of reaction of excess dipyrrolinoaluminum hydride (DPAH) with selected organic compounds containing representative functional groups under standardized conditions (tetrahydrofuran, 0, reagent : compound=4 : 1) were examined in order to define the characteristics of the reagent for selective reductions. The reducing ability of DPAH was also compared with that of bis(diethylamino)aluminum hydride (BEAH). The reagent appears to be stronger than BEAH, but weaker than the parent reagent in reducing strength. DPAH shows a unique reducing characteristics. Thus, the reagent reduces aldehydes, ketones, esters, acid chlorides, epoxides, and nitriles readily. In addition to that, ${\alpha},\;{\beta}$-unsaturated aldehyde is reduced to the saturated alcohol. Quinone are reduced cleanly to the corresponding 1,4-reduction products. The examination for possibility of achieving a partial reduction to aldehydes was also performed. Both primary and tertiary aromatic carboxamides are converted to aldehydes with a limiting amount of DPAH. Finally, disulfides and sulfoxides are readily reduced to thiols and sulfides, respectively.

공기 중에서 망간 다이옥사이드에 의한 아민에서 이민 또는 나이트릴로의 선택적 산화 반응 (Selective Oxidation of Amines to Imines or Nitriles by Manganese Dioxide in Air)

  • 김요한;황승규;이윤식;김정원
    • 공업화학
    • /
    • 제25권2호
    • /
    • pp.215-221
    • /
    • 2014
  • 염기 처리에 의한 간단한 방법으로 합성된 $MnO_2$ (B-$MnO_2$)는 불균일 촉매시스템으로 호기성 조건에서 효과적인 아민 산화반응을 보여주었다. 이 B-$MnO_2$ 촉매는 다양한 종류의 방향족, 이원자 화합물, 비활성 지방족 등의 아민의 전환에 높은 활성과 선택성을 보여주었다. 이러한 산화반응은 온화한 온도($50^{\circ}C$)와 대기압의 공기 조건하에서 아민을 중간체인 이민으로 전환하고 자가 축합(self-condensation) 또는 산화적 탈수소화(oxidative dehydrogenation)을 통해 다이이민(diimine) 또는 나이트릴(nitrile)을 생성하였다. 사용된 촉매는 여과로 쉽게 분리할 수 있었고 5번 이상의 재사용 실험에서도 일정이상의 높은 수율을 보여주었다. 따라서 B-$MnO_2$는 아민 산화반응을 통해 이민과 나이트릴을 얻음에 있어 경제적으로나 환경친환적으로 효과적인 면을 보여 줌으로써, 그린화학(green chemistry)의 목적에 적합하다.

Reaction of Lithium Tris(diethylamino)aluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • Jin Soon Cha;Jae Cheol Lee
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권4호
    • /
    • pp.469-475
    • /
    • 1993
  • The approximate rates and stoichiometry of the reaction of excess lithium tris(diethylamino)aluminum hydride (LTDEA) with selected organic compounds containing representative functional groups under standardized condition (tetrahydrofuran, 0$^{\circ}C$) were examined in order to define the characteristics of the reagent for selective reductions. The reducing ability of LTDEA was also compared with those of the parent lithium aluminum hydride (LAH) and lithium tris(dibutylamino)aluminum hydride (LTDBA). In general, the reactivity toward organic functionalities is in order of LAH${\gg}$LTDEA${\geq}$LTDBA. LTDEA shows a unique reducing characteristics. Thus, benzyl alcohol and phenol evolve hydrogen slowly. The rate of hydrogen evolution of primary, secondary, and tertiary alcohols is distinctive: 1-hexanol evolves hydrogen completely in 6 h, whereas 3-hexanol evolves hydrogen very slowly. However, 3-ethyl-3-pentanol does not evolve any hydrogen under these reaction conditions. Primary amine, such as n-hexylamine, evolves only 1 equivalent of hydrogen. On the other hand, thiols examined are absolutely inert to this reagent. LTDEA reduces aldehydes, ketones, esters, acid chlorides, and epoxides readily to the corresponding alcohols. Quinones, such as p-benzoquinone and anthraquinone, are reduced to the corresponding diols without hydrogen evolution. However, carboxylic acids, anhydrides, nitriles, and primary amides are reduced slowly, where as tertiary amides are readily reduced. Finally, sulfides and sulfoxides are reduced to thiols and sulfides, respectively, without evolution of hydrogen. In addition to that, the reagent appears to be an excellent partial reducing agent to convert esters, primary carboxamides, and aromatic nitriles into the corresponding aldehydes. Free carboxylic acids are also converted into aldehydes through treatment of acyloxy-9-BBN with this reagent in excellent yields.

수소화붕소아연에 의한 선택환원. 수소화붕소아연의 대표적 유기화합물과의 반응 (Selective Reduction with Zinc Borohydride. Reaction of Zinc Borohydride with Selected Organic Compounds Containing Representative Functional Groups)

  • 윤능민;이호준;김혜규;강재효
    • 대한화학회지
    • /
    • 제20권1호
    • /
    • pp.59-72
    • /
    • 1976
  • 수소화붕소아연의 선택환원성을 조사하기 위하여 대표적 유기화합물 54종을 택하여 수소화붕소 아연과 일정한 조건 (THF 용액, 실온, 수소화이온의 농도 : 0.5M, 유기화합물의 농도 : 0.125M)하에서 반응시켜 대략의 반응속도와 정량관계를 알아보았다.

  • PDF

수소화붕소리튬에 의한 선택환원. 수소화붕소리튬과 대표적 유기화합물과의 반응 (Selective Reduction with Lithium Borohydride. Reaction of Lithium Borohydride with Selected Organic Compounds Containing Representative Functional Groups)

  • 윤능민;차진순
    • 대한화학회지
    • /
    • 제21권2호
    • /
    • pp.108-120
    • /
    • 1977
  • 수소화붕소리튬-테트라히드로푸란용액의 환원특성에 대한 계통적인 연구가 52가지의 대표적인 작용기를 가진 유기화합물을 가지고 표준조건($0^{\circ}$, 테트라히드로 푸란)에서 대략의 반응속도 및 정량 관계를 알아봄으로서 이루어 졌다.

  • PDF

Reaction of Bis(diethylamino)aluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • Jin Soon Cha;Oh Oun Kwon;Jong Mi Kim
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권2호
    • /
    • pp.132-138
    • /
    • 1994
  • Bis(diethylamino)aluminum hydride was utilized in a systematic study of the approximate rates and stoichiometry of the reaction of excess reagent with 55 selected organic compounds containing representative functional groups under standardized conditions (THF, $0^{\circ}C$, reagent to compound=4 : 1) in order to define the characteristics of the reagent for selective reductions. The reducing action of BEAH was also compared with that of the parent aluminum hydride. The reducing action of the reagent is quite similar to that of aluminum hydride, but the reducing power is much weaker. Aldehydes and ketones were readily reduced in 1-3 h to the corresponding alcohols. However, unexpectedly, a ready involvement of the double bond in cinnamaldehyde was realized to afford hydrocinnamyl alcohol. The introduction of diethylamino group to the parent aluminum hydride appears not to be appreciably influential in stereoselectivity on the reduction of cyclic ketones. Both p-benzoquinone and anthraquinone utilized 2 equiv of hydride readily without evolution of hydrogen, proceeded cleanly to the 1,4-reduction products. Carboxylic acids and acid chlorides underwent reduction to alcohols slowly, whereas cyclic anhydrides utilized only 2 equiv of hydride slowly to the corresponding hydroxylacids. Especially, benzoic acid with a limiting amount of hydride was reduced to benzaldehyde in a yield of 80%. Esters and lactones were also readily reduced to alcohols. Epoxides examined all reacted slowly to give the ring-opened products. Primary and tertiary amides utilized 1 equiv of hydride fast and further hydride utilization was quite slow. The examination for possibility of achieving a partial reduction to aldehydes was also performed. Among them, benzamide and N,N-dimethylbenzamide gave ca, 90% yields of benzaldehyde. Both the nitriles examined were also slowly reduced to the amines. Unexpectedly, both aliphatic and aromatic nitro compounds proved to be relatively reactive to the reagent. On the other hand, azo- and azoxybenzenes were quite inert to BEAH. Cyclohexanone oxime liberated 1 equiv of hydrogen and utilized 1 equiv of hydride for reduction, corresponding to N-hydroxycyclohexylamine. Pyridine ring compounds were also slowly attacked. Disulfides were readily reduced with hydrogen evolution to the thiols, and dimethyl sulfoxide and diphenyl sulfone were also rapidly reduced to the sulfides.

Reaction of Diisobutylaluminum Hydride-Dimethyl Sulfide Complex with Selected Organic Compounds Containing Representative Functional Groups. Comparison of the Reducing Characteristics of Diisobutylaluminum Hydride and Its Dimethyl Sulfide Complex

  • Cha, Jin-Soon;Jeong, Min-Kyu;Kwon, Oh-Oun;Lee, Keung-Dong;Lee, Hyung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권10호
    • /
    • pp.873-881
    • /
    • 1994
  • The approximate rate and stoichiometry of the reaction of excess diisobutylaluminum hydride-dimethyl sulfide complex($DIBAH-SMe_2$) with organic compounds containing representative functional group under standardized conditions (toluene, $0{\circ}C$) were examined in order to define the reducing characterstics of the reagent and to compare the reducing power with DIBAH itself. In general, the reducing action of the complex is similar to that of DIBAH. However, the reducing power of the complex is weaker than that of DIBAH. All of the active hydrogen compounds including alcohols, amines, and thiols evolve hydrogen slowly. Aldehydes and ketones are reduced readily and quantitatively to give the corresponding alcohols. However, $DIBAH-SMe_2$ reduces carboxylic acids at a faster rate than DIBAH alone to the corresponding alcohols with a partial evolution of hydrogen. Similarly, acid chlorides, esters, and epoxides are readily reduced to the corresponding alcohols, but the reduction rate is much slower than that of DIBAH alone. Both primary aliphatic and aromatic amides examined evolve 1 equiv of hydrogen rapidly and are reduced slowly to the amines. Tertiary amides readily utilize 2 equiv of hydride for reduction. Nitriles consume 1 equiv of hydride rapidly but further hydride uptake is quite slow. Nitro compounds, azobenzene, and azoxybenzene are reduced moderately. Cyclohexanone oxime liberates ca. 0.8 equiv of hydrogen rapidly and is reduced to the N-hydroxylamine stage. Phenyl isocyanate is rapidly reduced to the imine stage, but further hydride uptake is quite sluggish. Pyridine reacts at a moderate rate with an uptake of one hydride in 48 h, while pyridine N-oxide reacts rapidly with consumption of 2 equiv of hydride for reduction in 6h. Similarly, disulfides and sulfoxide are readily reduced, whereas sulfide, sulfone, and sulfonic acid are inert to this reagent under these reaction conditions.