• Title/Summary/Keyword: Armor Piercing Bullet

Search Result 3, Processing Time 0.019 seconds

A Study on the Damage Design of Military Aircraft Structure Material by Armor Piercing Bullet Hit (철갑탄 피격에 의한 군용 항공기 구조재료의 손상설계에 관한 연구)

  • Hur, Jang-Wook;Hyun, Young-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1051-1057
    • /
    • 2010
  • Database for the damage reference by armor piercing bullet test was established for both tube and plate specimens having a range of thickness. As the inclined angles of hit are increasing, it has been found that penetration damage diameter tends to increases accordingly in both specimen of the tube and plate, and such penetration damage diameter on the rear side becomes bigger than those on the front side. The tube specimen showed that the damage becomes bigger when central areas rather than the peripheral were hit. Through the plate test, it also has been found that the penetration ballistic limit for Al alloy is about 25.4mm and that of stainless steel about 12.7mm. From the fatigue analysis results using the database for damage reference, it has been identified whether the safety requirements of military aircraft could be met.

Penetration Mechanisms of Ceramic Composite Armor Made of Alumina/GFRP

  • Jung, Woo-Kyun;Lee, Hee-Sub;Jung, Jae-Won;Ahn, Sung-Hoon;Lee, Woo-Il;Kim, Hee-Jae;Kwon, Jeong-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.4
    • /
    • pp.38-44
    • /
    • 2007
  • Combat vehicles are frequently maneuvered in battlefields when the lives of combatants are being threatened. These vehicles are important elements that influence the consequences of a battle. Their armor must be lightweight and provide excellent protection to ensure successful operations. Ceramic composite armor has recently been developed by many countries to fulfill these requirements. We reviewed previous research to determine an effective armor design, and then fabricated a composite armor structure using $Al_2O_3$ and glass fiber-reinforced polymer. Specimens were manufactured under controlled conditions using different backing plate thicknesses and bonding methods for the ceramic layer and the backing plate. The penetration of an armor-piercing bullet was evaluated from ballistic protection tests. The bonding method between the ceramic layer and the fiber-reinforced polymer influenced the ballistic protection performance. A bonding layer using rubber provided the best protection.

Experimental and numerical research on ballistic performance of carbon steels and cold worked tool steels with and without Titanium Nitride (TiN) coating

  • Ergul, Erdi;Doruk, Emre;Pakdil, Murat
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.153-160
    • /
    • 2017
  • It is extremely important to be aware of the ballistic performances of engineering materials in order to be able to choose the lightest armor providing full ballistic protection in civil and military applications. Therefore, ballistic tests are an important part of armor design process. In this study, ballistic performance of plates made of carbon steel and cold worked tool steel against 7.62 mm AP (armor-piercing) bullets was examined experimentally and numerically in accordance with NIJ standards. Samples in different sizes were prepared to demonstrate the effect of target thickness on ballistic performance. Some of these samples were coated with titanium nitride using physical vapor deposition (PVD) method. After examining all successful and unsuccessful samples at macro and micro levels, factors affecting ballistic performance were determined. Explicit non-linear analyses were made using Ls-Dyna software in order to confirm physical ballistic test results. It was observed that the ballistic features of steel plates used in simulations comply with actual physical test results.