• Title/Summary/Keyword: Armchair

Search Result 64, Processing Time 0.03 seconds

Recommendation for the modelling of Donnell shell: The relationship between non-local parameter and frequency

  • Mohamed A. Khadimallah;Muzamal Hussain;Elimam Ali;Sehar Asghar;Abdelouhed Tounsi
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.165-172
    • /
    • 2023
  • The vibration analysis of armchair, zigzag and chiral double-walled carbon nanotubes has been developed by inserting the nonlocal theory of elasticity into thin shell theory. First Donnell shell theory is employed while exercising wave propagation approach. Scale effects are realized by using different values of nonlocal parameters under certain boundary conditions. The natural frequencies have been investigated and displayed for various non-local parameters. It is noticed that on increasing nonlocal parameter, the frequency curve tends to decrease. The frequency estimates of clamped-free boundary condition are less than those of clamped-clamped and simply supported computations. The frequency comparisons are presented for armchair, zigzag and chiral nanotubes. The software MATLAB is used to extract the frequencies of double walled carbon nanotubes.

Structural properties of vacancy defects, dislocations, and edges in graphene

  • Lee, Gun-Do;Yoon, Eui-Joon;Hwang, Nong-Moon;Kim, Young-Kuk;Ihm, Ji-Soon;Wang, Cai-Zhuang;Ho, Kai-Ming
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.428-429
    • /
    • 2011
  • Recently, we performed ab initio total energy calculation and tight-binding molecular dynamics (TBMD) simulation to study structures and the reconstruction of native defects in graphene. In the previous study, we predicted by TBMD simulation that a double vacancy in graphene is reconstructed into a 555-777 composed of triple pentagons and triple heptagons [1]. The structural change from pentagon-octagon-pentagon (5-8-5) to 555-777 has been confirmed by recent experiments [2,3] and the detail of the reconstruction process is carefully studied by ab initio calculation. Pentagon-heptagon (5-7) pairs are also found to play an important role in the reconstruction of vacancy in graphene and single wall carbon nanotube [4]. In the TBMD simulation of graphene nanoribbon (GNR), we found the evaporation of carbon atoms from both the zigzag and armchair edges is preceded by the formation of heptagon rings, which serve as a gateway for carbon atoms to escape. In the simulation for a GNR armchair-zigzag-armchair junction, carbon atoms are evaporated row-by-row from the outermost row of the zigzag edge [5], which is in excellent agreement with recent experiments [2, 6]. We also present the recent results on the formation and development of dislocation in graphene. It is found that the coalescence of 5-7 pairs with vacancy defects develops dislocation in graphene and induces the separation of two 5-7 pairs. Our TBMD simulations also show that adatoms are ejected and evaporated from graphene surface due to large strain around 5-7 pairs. It is observed that an adatom wanders on the graphene surface and helps non-hexagonal rings change into stable hexagonal rings before its evaporation.

  • PDF

Mode III Fracture Toughness of Single Layer Graphene Sheet Using Molecular Mechanics (분자역학을 사용한 단층 그래핀 시트의 모드 III 파괴인성)

  • Nguyen, Minh-Ky;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.121-127
    • /
    • 2014
  • An atomistic-based finite bond element model for predicting the tearing mode (mode III) fracture of a single-layer graphene sheet (SLGS) is developed. The model uses the modified Morse potential for predicting the maximum strain relationship of graphene sheets. The mode III fracture of graphene under out-of-plane shear loading is investigated with extensive molecular mechanics simulations. Molecular mechanics is used for describing the displacements of atoms in the area near a crack tip, and linear elastic fracture mechanics is used outside this area. This work shows that the molecular mechanics method can provide a reliable and yet simple method for determining not only the shear properties of SLGS but also its mode III fracture toughness in the armchair and the zigzag directions; the determined mode III fracture toughness values of SLGS are $0.86MPa{\sqrt{m}}$ and $0.93MPa{\sqrt{m}}$, respectively.

Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity

  • Hussain, Muzamal;Naeem, Muhammad Nawaz;Tounsi, Abdelouahed;Taj, Muhammad
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.431-442
    • /
    • 2019
  • Vibration analysis of carbon nanotubes (CNTs) is very essential field owing to their many promising applications in tiny instruments. In current study, the Eringen's nonlocal elasticity theory with clamped-clamped and clamped-free end conditions is utilized for the vibration analysis of armchair and zigzag SWCNTs. The Fourier method is utilized to solve the ordinary differential equation. The motion equation for this system is developed using a novel wave propagation method. Complex exponential functions have been used and the axial model depends on BCs that has been described at the edges of CNTs. The behavior of different nonlocal parameters is considered to find the vibrational frequency of SWCNTs. It is exhibited that the effect of frequencies against aspect ratio by varying the bending rigidity. It has been investigated that by increasing the nonlocal parameter decreases the frequencies and on increasing the aspect ratio increases the frequencies for both the tubes. To generate the fundamental natural frequencies of SWCNTs, computer software MATLAB engaged. The numerical results are validated with existing open text. Since the percentage of error is negligible, the model has been concluded as valid.

Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation

  • Mohamed, Nazira;Eltaher, Mohamed A.;Mohamed, Salwa A.;Seddek, Laila F.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.737-750
    • /
    • 2019
  • This paper investigates the static and dynamic behaviors of imperfect single walled carbon nanotube (SWCNT) modeled as a beam structure by using energy-equivalent model (EEM), for the first time. Based on EEM Young's modulus and Poisson's ratio for zigzag (n, 0), and armchair (n, n) carbon nanotubes (CNTs) are presented as functions of orientation and force constants. Nonlinear Euler-Bernoulli assumptions are proposed considering mid-plane stretching to exhibit a large deformation and a small strain. To simulate the interaction of CNTs with the surrounding elastic medium, nonlinear elastic foundation with cubic nonlinearity and shearing layer are employed. The equation governed the motion of curved CNTs is a nonlinear integropartial-differential equation. It is derived in terms of only the lateral displacement. The nonlinear integro-differential equation that governs the buckling of CNT is numerically solved using the differential integral quadrature method (DIQM) and Newton's method. The linear vibration problem around the static configurations is discretized using DIQM and then is solved as a linear eigenvalue problem. Numerical results are depicted to illustrate the influence of chirality angle and imperfection amplitude on static response, buckling load and dynamic behaviors of armchair and zigzag CNTs. Both, clamped-clamped (C-C) and simply supported (SS-SS) boundary conditions are examined. This model is helpful especially in mechanical design of NEMS manufactured from CNTs.

Effect of moving load on dynamics of nanoscale Timoshenko CNTs embedded in elastic media based on doublet mechanics theory

  • Abdelrahman, Alaa A.;Shanab, Rabab A.;Esen, Ismail;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.255-270
    • /
    • 2022
  • This manuscript illustrates the dynamic response of nanoscale carbon nanotubes (CNTs) embedded in an elastic media under moving load using doublet mechanics theory, which not considered before. CNTs are modelled by Timoshenko beam theory (TBT) and a bottom to up modelling nano-mechanics is simulated by doublet mechanics theory to capture the size effect of CNTs. To explore the influence of the CNTs configurations on the dynamic behaviour, both armchair and zigzag configurations are considered. The governing equations of motion and the associated boundary conditions are obtained using the Hamiltonian principle. The Navier solution methodology is applied to obtain the solutions for both orientations. Free vibration and forced response under moving loads are considered. The accuracy of the developed procedure is verified by comparing the obtained results with available previous algorithms and good agreement is observed. Parametric studies are conducted to demonstrate effects of doublet length scale, CNTs configurations, moving load velocities as well as the elastic media parameters on the dynamic behaviours of CNTs. The developed procedure is supportive in the design and manufacturing of MEMS/NEMS made from CNTs.

Spectral Element Modeling of an Extended Timoshenko Beam Based on the Force-Displacement Relations (힘-변위 관계를 이용한 확장된 티모센코 보에 대한 스펙트럴 요소 모델링)

  • Lee, Chang-Ho;Lee, U-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.45-48
    • /
    • 2008
  • Periodic lattice structures such as the large space lattice structures and carbon nanotubes may take the extension-transverse shear-bending coupled vibrations, which can be well represented by the extended Timoshenko beam theory. In this paper, the spectrally formulated finite element model (simply, spectral element model) has been developed for extended Timoshenko beams and applied to some typical periodic lattice structures such as the armchair carbon nanotube, the periodic plane truss, and the periodic space lattice beam.

  • PDF

A Study of Mechanical Properties of Carbon Nanotubes through TBMD Simulation (TBMD SIMULATION을 이용한 탄소 나노튜브의 역학적 특성 연구)

  • 박문필;이강환;황호정
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.169-172
    • /
    • 2001
  • We have investigated the mechanical deformation of carbon nanotube using TBMD(tight-binding molecular dynamics) simulation. We have studied four carbon nanotubes, armchair (6, 6), (7, 7), (8, 8), and (9, 9) carbon nanotubes whose length were same. As a result of study, we have known that the nanotube's yield force increases with incresing their diameter. It is similar between (6, 6) and (8, 8) CNT's force-strain curves. Also force-strain curve between (7,7) and (9, 9) CNTs are nearly same.

  • PDF