• Title/Summary/Keyword: Argon plasma

Search Result 323, Processing Time 0.026 seconds

Phlegmonous Gastritis with Early Gastric Cancer

  • Kim, Kyung Hee;Kim, Chan Gyoo;Kim, Young-Woo;Moon, Hae;Choi, Jee Eun;Cho, Soo-Jeong;Lee, Jong Yeul;Choi, Il Ju
    • Journal of Gastric Cancer
    • /
    • v.16 no.3
    • /
    • pp.195-199
    • /
    • 2016
  • Phlegmonous gastritis is a rare and rapidly progressive bacterial infection of the stomach wall, with a high mortality rate. Antibiotics with or without surgical treatment are required for treatment. We present a case in which phlegmonous gastritis occurred during the diagnostic evaluation of early gastric cancer. The patient showed improvement after antibiotic treatment, but attempted endoscopic submucosal dissection failed because of submucosal pus. We immediately applied argon plasma coagulation since surgical resection was also considered a high-risk procedure because of the submucosal pus and multiple comorbidities. However, there was local recurrence two years later, and the patient underwent subtotal gastrectomy with lymph node dissection. Considering the risk of incomplete treatment immediately after recovery from phlegmonous gastritis and that recurrent disease can be more difficult to manage, delaying treatment and evaluation until after complete recovery of PG might be a better option in this particular clinical situation.

Successful Treatment of Tracheal Invasion Caused by Thyroid Cancer Using Endotracheal Tube Balloon Inflation under Flexible Bronchoscopic Guidance

  • Han, Yang-Hee;Jung, Bock-Hyun;Kwon, Jun Sung;Lim, Jaemin
    • Tuberculosis and Respiratory Diseases
    • /
    • v.77 no.5
    • /
    • pp.215-218
    • /
    • 2014
  • Tracheal invasion is an uncommon complication of thyroid cancer, but it can cause respiratory failure. A rigid bronchoscope may be used to help relieve airway obstruction, but general anesthesia is usually required. Tracheal balloon dilatation and stent insertion can be performed without general anesthesia, but complete airway obstruction during balloon inflation may be dangerous in some patients. Additionally, placement of the stent adjacent to the vocal cords can be technically challenging. An 86-year-old female patient with tracheal invasion resulting from thyroid cancer was admitted to our hospital because of worsening dyspnea. Due to the patient's refusal of general anesthesia and the interventional radiologist's difficulty in completing endotracheal stenting, we performed endotracheal tube balloon dilatation and argon plasma coagulation. We have successfully treated tracheal obstruction in the patient with thyroid cancer by using endotracheal tube balloon inflation and a flexible bronchoscope without general anesthesia or airway obstruction during balloon inflation.

A STUDY ON THE COLOR CHANCE OF CERAMIC BY Pd-Ag ALLOY AND MECHANISM (팔라디움-은합금에 의한 도재의 색조변화 및 변색작용에 관한 연구)

  • Youn, Soo-Sun;Lee, Sun-Hyung;Yang, Jae-Ho;Chong, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.1
    • /
    • pp.123-141
    • /
    • 1989
  • The purpose of this study was to investigate the tendency of color change of ceramic, and its mechanism un der the influence of Pd-Ag alloy. The specimens were made by firing porcelain on tile metal plates cast with Au-Pt alloy, Pd-Cu alloy and Pd-Ag alloy. In the case of Pd-Ag alloy, specimens were fired under three different conditions as follows, 1) without protection, 2) protection with ceramic metal conditioner, 3) protection with carbon block. For the specimens of element analysis, a barrier was constructed with platinum foil between metal plate and ceramic. Color change was measured with colorimeter and elemental changes in ceramic were calculated with DC argon plasma emission spectrophotometer. The results were as follows : 1. Color change of ceramic by Pd-Ag alloy was negligible in hue, but decreased in value and increased in chroma (yellow discoloration). 2. Color change of ceramic by Pd-Ag alloy was appeared through vapor transport mechanism. 3. As the protection method for the color change of ceramic by Pd-Ag alloy, application of ceramic metal conditioner was superior to utilization of carbon block.

  • PDF

Preparation of Co-Cr Thin Films by Facing Targets Sputtering (대향타겟스퍼터링에 의한 Co-Cr 박막의 제작)

  • ;;;;;S. Nakagawa;M.Naoe
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.5
    • /
    • pp.418-422
    • /
    • 1998
  • The Co-Cr films are one of the most suitable candidates for perpendicular magnetic recording media. The facing targets sputtering(FTS) system has a advantage of preparing films over a wide range of working gas pressure on plasma-free substrate. In this study, we investigated the possibility of employing FTS system for depositing Co-Cr films. The Co-Cr thin films were deposited with various sputter gas pressure($P_Ar$, 0.1~10mTorr) by using FTS apparatus at temperature of $40^{\circ}C and 220^{\circ}C$, respectively. Crystallographic and magnetic characteristics were evaluated by x-ray diffractometry (XRD) and vibrating sample magnetometer(VSM), respectively. Under argon gas pressure at 0.1mTorr, films with morphologically dense microstructure, good c-axis orientation and higher coercivity were obtained. It has been confirmed that the FTS system is very useful for preparing Co-Cr thin film recording media.

  • PDF

CaO Crucible Induction Melting and Investment Casting of TiAl Alloys (TiAl 합금의 CaO 도가니 유도용융 및 정밀주조)

  • Kim, Myoung-Gyun;Sung, Si-Young;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.22 no.2
    • /
    • pp.75-81
    • /
    • 2002
  • The main objectives were to investigate the suitability of CaO crucible for melting TiAl alloys and to develop investment mold for investment casting of TiAl alloys. TiAl alloy specimen were prepared by plasma arc furnace under argon atmosphere. After melting of TiAl alloy using CaO crucible, the results showed that there is little contamination of oxygen in the TiAl bulk. Conventional vacuum induction furnaces can be readily adaptable to produce cast parts of TiAl without high skilled techniques. The determination of optical metallography and microhardness profiles in investment cast TiAl alloy rods has allowed the gradation of the relative thermal stability of the oxides examined. The molds used for the present study were $ZrO_2$, $Al_2O_3$, CaO stabilized $ZrO_2$ and $ZrSiO_4$. Even although high temperature of mold preheating, $Al_2O_3$ mold is a promising mold material for investment casting of TiAl alloys in terms of thermal stability, cost and handling strength. It is important to take thermal stability and preheating temperature of mold into consideration for investment casting of TiAl alloys.

Structural and electrical properties of high temperature deposited epitaxial ZnO thin film by RF magentron sputtering (RF 마그네트론 스퍼터일 법으로 증착된 에피택셜 ZnO 박막의 구조적, 전기적 특성)

  • Kim, Dong-Hun;Cho, Nam-Gyu;Park, Hun;Kim, Ho-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.184-185
    • /
    • 2007
  • We investigated the growth behaviors of ZnO epilayers on sapphire substrates fabricated sing RF magnetron puttering and RTA. The effects of deposition temperature and oxygen partial pressure in plasma on the structural and electrical properties were measured by XRD, AFM, SEM, and Hall effect measurement. It was found that ZnO thin films became denser and smoother with increasing deposition temperature and $O_2$ content in the puttering gas. ZnO thin film of oxygen and argon with a ratio of 5:5 had an electron concentration of $8.048{\times}10^{18}cm^{-3}$, resistivity of $0.0141{\Omega}{\cdot}Cm$, and mobility of $55.07cm^2/V{\cdot}s$.

  • PDF

Surface Properties of Re-Ir Coating Thin Film on Tungsten Carbide Surface (Tungsten Carbide 표면에 코팅된 Re-Ir 박막의 표면 특성)

  • Lee, Ho-Shik;Cheon, Min-Woo;Park, Yong-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.3
    • /
    • pp.219-223
    • /
    • 2011
  • Rhenium-Iridium(Re-Ir) thin films were deposited onto the tungsten carbide(WC) molding core by sputtering system. The Re-Ir films were prepared by multi-target sputtering with iridium, rhenium and chromium as the sources. Argon and nitrogen were inlet into the chamber to be the plasma and reactive gases. The Re-Ir thin films were prepared with targets having atomic percent of 3:7 and the Re-Ir thin films were formed with 240 nm thickness. The Re-Ir thin films on tungsten carbide molding core were analyzed by scanning electron microscope(SEM) and surface roughness. Also, adhesion strength and coefficient friction of Re-Ir thin film were examined. The Re-Ir coating technique has been intensive efforts in the field of coating process because the coating technique and process have been their feature, like hardness, high elasticity, abrasion resistance and mechanical stability and also have been applied widely the industrial and biomedical areas. In this report, tungsten carbide(WC) molding core was manufactures using high performance precision machining and the efforts of Re-Ir coating on the surface roughness.

Evaluation of Iron and Zinc Content in Rice Germplasms

  • Lee, Jeom-Ho;Lee, Kyu-Seong;Hwang, Hung-Goo;Yang, Chang-Ihn;Lee, Sang-Bok;Choi, Young-Hwan;Jeong, O-Young;Virk, Parminder
    • Korean Journal of Breeding Science
    • /
    • v.40 no.2
    • /
    • pp.101-105
    • /
    • 2008
  • The germplasm of 246 rice cultivars was analysed for iron and zinc contents using a Inductively Coupled Argon Plasma (ICP) at International Rice Research Institute (IRRI) Philippines. Iron contents ranged from 2.0 to 12.0, and zinc ranged from 10.0 to 33.0 (mg/kg), showing with the mean values of 4.3 and 22.8 (mg/kg), respectively. In genotypes tested, there was approximately a two-fold difference in iron and zinc concentrations, suggesting a genetic potential to increase these micronutrients in rice grain. A highly significant positive correlation ($r^2=0.503$) was found between iron and zinc contents. Iron contents decreased drastically as polishing time increased, whereas zinc decreased only slightly. In the interaction between genotype and environment on iron contents, genotype (G), environment (E), and the G ${\times}$ E interactions accounted for 69%, 5% and 26% of the sums of squares, respectively. Indicating that genotype is would be the most significant factor for the to improve iron contents of rice in rice breeding, suggesting that therefore identifying genotypes with relatively stable performance across various environments is important as staple food crops.

Fabrication and evaluation of hydrophobic metal stent using electron beam equipment (전자빔 처리를 통한 발수성 금속 스텐트 제작 및 평가)

  • Kim, Jisoo;Park, Jongsung
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.165-169
    • /
    • 2021
  • The objective of this study was to fabricate a novel hydrophobic stent for reducing restenosis by employing electron beam equipment. The stent was fabricated from a CoCr alloy tube by using a femtosecond laser and was treated with argon plasma. Subsequently, the stent's surface specification changed from hydrophilic to hydrophobic. Application of the electron beam offers several advantages such as a short processing time, whole surface reforming, and enhancement of material properties. As the surface of the stent was rendered hydrophobic, it can provide equivalent or enhanced mechanical properties and greater functionality with a higher radial force at the extended stent in a blood vessel. The obtained results corresponding to the mechanical properties indicate that the contact angle increased to approximately 130°, and the radial force increased to approximately 3 N. Furthermore, cell culture experiments were conducted for verifying whether cells were cultured on the surface-modified CoCr surface. Based on the obtained results, it is believed that an effective reduction in the restenosis of inserted vascular stents is possible.

The Development of an Electroconductive SiC-ZrB2 Composite through Spark Plasma Sintering under Argon Atmosphere

  • Lee, Jung-Hoon;Ju, Jin-Young;Kim, Cheol-Ho;Park, Jin-Hyoung;Lee, Hee-Seung;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.342-351
    • /
    • 2010
  • The SiC-$ZrB_2$ composites were fabricated by combining 30, 35, 40, 45 and 50 vol. % of zirconium diboride ($ZrB_2$) powders with silicon carbide (SiC) matrix. The SiC-$ZrB_2$ composites and the sintered compacts were produced through spark plasma sintering (SPS) under argon atmosphere, and its physical, electrical, and mechanical properties were examined. Also, the thermal image analysis of the SiC-$ZrB_2$ composites was examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed via x-ray diffraction (XRD) analysis. The apparent porosity of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$, SiC+45vol.%$ZrB_2$ and SiC+50vol.%$ZrB_2$ composites were 7.2546, 0.8920, 0.6038, 1.0981, and 10.0108%, respectively. The XRD phase analysis of the sintered compacts demonstrated a high phase of SiC and $ZrB_2$. Among the $SiC+ZrB_2$ composites, the SiC+50vol.%$ZrB_2$ composite had the lowest flexural strength, 290.54MPa, the other composites had more than 980MPa flexural strength except the SiC+30vol.%$ZrB_2$ composite; the SiC+40vol.%$ZrB_2$ composite had the highest flexural strength, 1011.34MPa, at room temperature. The electrical properties of the SiC-$ZrB_2$ composites had positive temperature coefficient resistance (PTCR). The V-I characteristics of the SiC-$ZrB_2$ composites had a linear shape in the temperature range from room to $500^{\circ}C$. The electrical resistivities of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$ SiC+45vol.%$ZrB_2$ and SiC+50vol.%$ZrB_2$ composites were $4.573\times10^{-3}$, $1.554\times10^{-3}$, $9.365\times10^{-4}$, $6.999\times10^{-4}$, and $6.069\times10^{-4}\Omega{\cdot}cm$, respectively, at room temperature, and their resistance temperature coefficients were $1.896\times10^{-3}$, $3.064\times10^{-3}$, $3.169\times10^{-3}$, $3.097\times10^{-3}$, and $3.418\times10^{-3}/^{\circ}C$ in the temperature range from room to $500^{\circ}C$, respectively. Therefore, it is considered that among the sintered compacts the SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$ and SiC+45vol.%$ZrB_2$ composites containing the most outstanding mechanical properties as well as PTCR and V-I characteristics can be used as an energy friendly ceramic heater or ohmic-contact electrode material through SPS.