• Title/Summary/Keyword: Argon Discharge

Search Result 124, Processing Time 0.032 seconds

Noise Reduction Design of Plasma Display Panel (플라즈마 디스플레이의 저소음 설계)

  • Park, Dae-Kyong;Kweon, Hae-Sub;Jang, Dong-Seob
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.369.2-369
    • /
    • 2002
  • For the evaluation of the plasma display panel (PDP)'s noise, vibration and sound characteristics of fanless PDP are measured and investigated. PDP is a type of two-electrode vacuum tube which operatres on the same principle as a household fluorescent light. An inert gas such as argon or neon is injected between two glass plates on which transparent electrodes have been formed, and the glass is illuminated by generating discharge. (omitted)

  • PDF

Numerical Analysis of Electron Energy Variation in Weakly Ionized Plasma Under Low Alternating Electric Fields (교류 저전계 인가시 약이온화된 프라즈마 전자에너지 변화의 수치해석)

  • 지철근;장우진;박왕렬;이진우
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.5
    • /
    • pp.516-518
    • /
    • 1990
  • We have derived the equation which involves the variation of electron energy with time in a lowly ionized plasma when a low alternating electric field is applied. We consider only elastic collisions between electrons and neutral atoms. This equation is solved using the 4th-order Runge-Kutta method, and applied to argon gas discharge which is driven by source frequency of 100, 1K, 10K, 100K, and 1M (Hz). The results show that the variation of electron energy becomes flat with higher frequencies.

  • PDF

Determination of electron energy distribution functions in radio-frequency (RF) and microwave discharges (RF/마이크로웨이브 방전에서의 전자에너지 분포함수의 결정)

  • 고욱희;박인호;김남춘
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.4
    • /
    • pp.424-430
    • /
    • 2001
  • An electron Boltzmann equation is solved numerically to calculate the electron energy distribution functions in plasma discharge which is generated by radio-frequency (RF) and microwave frequency electric field. The maintenance field strengths are determined self-consistently by solving the homogeneous electron Boltzmann equation in the Lorentz approximation expressed by 2nd order differential equation and an additional particle balance equation expressed by integro-differential equation. By using this numerical code, the electron energy distribution functions in argon discharge are calculated in the range from RF to microwave frequency. The influence of frequency of the HF electric field on the electron energy distribution functions and ionization rate are investigated.

  • PDF

Electrochemical Lithium Insertion/Extraction for Carbonaceous Thin Film Electrodes in Propylene Carbonate Solution

  • Fukutsuka, Tomokazu;Abe, Takeshi;Inaba, Minoru;Ogumi, Zempachi;Matsuo, Yoshiaki;Sugie, Yosohiro
    • Carbon letters
    • /
    • v.1 no.3_4
    • /
    • pp.129-132
    • /
    • 2001
  • Carbonaceous thin films were prepared from acetylene and argon gases by plasma assisted chemical vapor deposition (Plasma CVD) at 873 K. The carbonaceous thin films were characterized by mainly Raman spectroscopy, and their electrochemical properties were studied by cyclic voltammetry and charge-discharge measurements in propylene carbonate (PC) solution. Raman spectra showed that crystallinity of carbonaceous thin films is correlated by the applied RF power. The difference of the applied RF power also affected on the results of cyclic voltammetry and charge-discharge measurements. In PC solution, intercalation and de-intercalation of lithium ion can occur as well as in the mixed solution of EC and DEC.

  • PDF

Behaviors of excited states argon atom density in ICP discharge

  • Park, Min;Yu, Sin-Jae;Kim, Jeong-Hyeong;Seong, Dae-Jin;Sin, Yong-Hyeon;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.203-203
    • /
    • 2011
  • Metastable statates, resonant states in 4s level and excited states in 4p level were investigated with a simple global model and examined by the LIF experiments. Metastable states exhibit an anomalous behavior with the plasma density, on the other hands, other states show monotonous increasing behaviors. It turns out that the metastable state can have such an anomalous behavior due to its special characteristic, electric dipole radiation forbidden. It is expected to resolve the ambiguity of previously reported metastable density behaviors and provide further understanding.

  • PDF

Application to Gas Sensors by Electron Emission from Carbon Nanotube Emitters (탄소나노튜브 전극으로부터 전계방출을 이용한 가스센서의 응용)

  • Kim Seong-Jeen
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.405-410
    • /
    • 2006
  • We fabricated gas sensors using carbon nanotubes (CNTs) as electron emitters for the purpose of detecting inert gases. By using the silicon-glass anodic bonding and glass patterning technologies with the typical Si process, we improved the compactness of the sensors and the reliability in process. The proposed sensor, based on, an electrical discharge theory known as Paschen's law in principle, works by figuring the variation of the discharge current depending on gas concentration. In the experiment, the initial breakdown characteristics were measured for air and Ar as a function of gas pressure. As the result, even though it should be realized that there are many other factors which have an effect on the breakdown of a gap, the sensors led to similar result as predicted by Paschen's law, and they showed a possibility as gas sensors which enable to detect the gas density ranged to the vacuum pressure from 1 to $10^{-3}$ Torr.

Sputter Etching and Chlorination of Wool Fabric (양모직물의 Sputter Etching 및 염소처리)

  • Hwang, Back-Soon;Lee, Jae-Ho;Park, Jung-Whan;Kim, Duk-Ly
    • Fashion & Textile Research Journal
    • /
    • v.3 no.4
    • /
    • pp.344-350
    • /
    • 2001
  • Wool fabrics were treated with dichloro isocyanuric acid (DCCA) and dyed with acid dyes (C.I. Acid Red 18), and then, they were treated by sputter etching. Wool fabrics had been sputtered with aluminium under various conditions such as sputter etching time and discharge power in the presence of argon gas. We compared mechanical properties, colour difference and fastness properties of these samples one another: Mechanical properties and colour difference of sputtered wool fabrics changed by sputter etching time, discharge power and DCCA concentration. Light fastness showed a rising tendency but rubbing fastness showed a downward tendency when sputter etching time was 7 minutes.

  • PDF

RF-Sputted Vanadium Oxide Thin Films:Effect of Oxygen Partial Pressure on Structural and Electrochemical Properties

  • Park, Yong Jun;Park, Nam Gyu;Ryu, Gwang Seon;Jang, Sun Ho;Park, Sin Jong;Yun, Seon Mi;Kim, Dong Guk
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.1015-1018
    • /
    • 2001
  • Vanadium oxide thin films with thickness of about 2000 $\AA$ have been prepared by radio frequency sputter deposition using a V2O5 target in a mixed argon and oxygen atmosphere with different Ar/O2 ratio ranging from 99/1 to 90/10. X-ray diffraction and X-ray absorption near edge structure spectroscopic studies show that the oxygen content higher than 5% crystallizes a stoichiometric V2O5 phase, while oxygen deficient phase is formed in the lower oxygen content. The oxygen content in the mixed Ar + O2 has a significant influence on electrochemical lithium insertion/deinsertion property. The discharge-charge capacity of vanadium oxide film increases with increasing the reactive oxygen content. The V2O5 film deposited at the Ar/O2 ratio of 90/10 exhibits high discharge capacity of 100 ${\mu}Ah/cm2-{\mu}m$ along with good cycle performance.

Current, flow rate and pressure effects in a Gas-Jet-assisted Glow Discharge source (Gas-Jet-assisted Glow Discharge에서 전류, 가스 흐름 속도, 압력에 따른 영향 연구)

  • Lee, Gaeho;Kim, Dongsoo;Kim, Eunhee;Kang, Seongshik;Park, Minchun;Song, Haeran;Kim, Hasuck;Kim, Hyojin
    • Analytical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.483-492
    • /
    • 1994
  • Direct solid analysis of various kinds of metal samples has been conducted by glow discharge. In this laboratory, the gas-jet assisted glow discharge(GJGD) device has been developed and characterized. The effect of changes in applied current, cell pressure and flow rate on atomic emission signals obtained from a jet-assisted cathodic sputtering was investigate. The emission intensities of Cu, Zn, and Ar were measured. They were increased with the current. But the intensities were decreased by increasing the flow rate of argon due to the diffusion and transportation of particles into plasma. By increasing the pressure of the cell, the intensities were greatly decreased because of enhancement of redeposition onto the surface of the sample.

  • PDF

Development of RF Ion Source for Neutral Beam Injector in Fusion Devices

  • Jang, Du-Hui;Park, Min;Kim, Seon-Ho;Jeong, Seung-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.550-551
    • /
    • 2013
  • Large-area RF-driven ion source is being developed at Germany for the heating and current drive of ITER plasmas. Negative hydrogen (deuterium) ion sources are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen ions have been successfully developed at IPP (Max-Planck- Institute for Plasma Physics, Garching) for ASDEX-U and W7-AS neutral beam injection (NBI) systems. In recent, the first NBI system (NBI-1) has been developed successfully for the KSTAR. The first and second long-pulse ion sources (LPIS-1 and LPIS-2) of NBI-1 system consist of a magnetic bucket plasma generator with multi-pole cusp fields, filament heating structure, and a set of tetrode accelerators with circular apertures. There is a development plan of large-area RF ion source at KAERI to extract the positive ions, which can be used for the second NBI (NBI-2) system of KSTAR, and to extract the negative ions for future fusion devices such as ITER and K-DEMO. The large-area RF ion source consists of a driver region, including a helical antenna (6-turn copper tube with an outer diameter of 6 mm) and a discharge chamber (ceramic and/or quartz tubes with an inner diameter of 200 mm, a height of 150 mm, and a thickness of 8 mm), and an expansion region (magnetic bucket of prototype LPIS in the KAERI). RF power can be transferred up to 10 kW with a fixed frequency of 2 MHz through a matching circuit (auto- and manual-matching apparatus). Argon gas is commonly injected to the initial ignition of RF plasma discharge, and then hydrogen gas instead of argon gas is finally injected for the RF plasma sustainment. The uniformities of plasma density and electron temperature at the lowest area of expansion region (a distance of 300 mm from the driver region) are measured by using two electrostatic probes in the directions of short- and long-dimension of expansion region.

  • PDF