• 제목/요약/키워드: ArgE

검색결과 99건 처리시간 0.022초

Mutations in the gyrB, parC, and parE Genes of Quinolone-Resistant Isolates and Mutants of Edwardsiella tarda

  • Kim, Myoung-Sug;Jun, Lyu-Jin;Shin, Soon-Bum;Park, Myoung-Ae;Jung, Sung-Hee;Kim, Kwang-Il;Moon, Kyung-Ho;Jeong, Hyun-Do
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권12호
    • /
    • pp.1735-1743
    • /
    • 2010
  • The full-length genes gyrB (2,415 bp), parC (2,277 bp), and parE (1,896 bp) in Edwardsiella tarda were cloned by PCR with degenerate primers based on the sequence of the respective quinolone resistance-determining region (QRDR), followed by elongation of 5' and 3' ends using cassette ligation-mediated PCR (CLMP). Analysis of the cloned genes revealed open reading frames (ORFs) encoding proteins of 804 (GyrB), 758 (ParC), and 631 (ParE) amino acids with conserved gyrase/topoisomerase features and motifs important for enzymatic function. The ORFs were preceded by putative promoters, ribosome binding sites, and inverted repeats with the potential to form cruciform structures for binding of DNA-binding proteins. When comparing the deduced amino acid sequences of E. tarda GyrB, ParC, and ParE with those of the corresponding proteins in other bacteria, they were found to be most closely related to Escherichia coli GyrB (87.6% identity), Klebsiella pneumoniae ParC (78.8% identity), and Salmonella Typhimurium ParE (89.5% identity), respectively. The two topoisomerase genes, parC and parE, were found to be contiguous on the E. tarda chromosome. All 18 quinolone-resistant isolates obtained from Korea thus far did not contain subunit alternations apart from a substitution in GyrA (Ser83$\rightarrow$Arg). However, an alteration in the QRDR of ParC (Ser84$\rightarrow$Ile) following an amino acid substitution in GyrA (Asp87$\rightarrow$Gly) was detected in E. tarda mutants selected in vitro at $8{\mu}g/ml$ ciprofloxacin (CIP). A mutant with a GyrB (Ser464$\rightarrow$Leu) and GyrA (Asp87$\rightarrow$Gly) substitution did not show a significant increase in the minimum inhibitory concentration (MIC) of CIP. None of the in vitro mutants exhibited mutations in parE. Thus, gyrA and parC should be considered to be the primary and secondary targets, respectively, of quinolones in E. tarda.

Structure and Photoreaction of Photoactive Yellow Protein

  • Imamoto, Yasushi;Harigai, Miki;Shimizu, Nobutaka;Kamikubo, Hironari;Yamazaki, Yoichi;Kataoka, Mikio
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.126-129
    • /
    • 2002
  • The chromophore/protein interactions in the photocycle intermediates of photoactive yel- low protein (PYP) were probed by site-directed mutagenesis. The absorption spectra of L- intermediates produced from E46Q, T50V, and R52Q mutants were calculated using the absorption spectra of dark states and difference absorption spectra between L-intermediates and dark states, and compared with that of PYP$\_$L/. The absorption spectrum of R52Q$\_$L/ agreed with that of PYP$\_$L/, but those of E46Q$\_$L/ and T50V$\_$L/ were red-shifted. The effect of these mutations on the absorption spectrum for L-intermediate was comparable to that for the dark state, suggesting that the interaction around the phe-nolic oxygen of the chromophore is conserved in PYP$\_$L/ unlike the crystal structure. On the other hand, we have reported that the absorption spectra of Y 42F$\_$M/, T50V $\_$M/, and R52Q$\_$M/ agreed with that of PYP$\_$M/, but that of E46Q$\_$M/ was red-shifted, suggesting that the hydrogen bond of the chromophore with Glu46 is conserved but that with Tyr42 is broken in PYP$\_$M/. These results suggest that the chromophore inter-acts with Glu46 throughout the photocycle, but never directly interacts with Arg52. This model con- flicts with some of the structural model of PYP intermediates proposed based on the high-resolution X -ray crystallography.

  • PDF

A Study on DNA Sequences and Mutation of Integrase Region of Korean-type Bovine Leukemia Virus (BLV) pol Gene

  • Kwon, Oh-Sik;Kang, Jung-Soon;Park, Hyun-Jin;Yoo, Min
    • 대한의생명과학회지
    • /
    • 제10권1호
    • /
    • pp.55-63
    • /
    • 2004
  • Bovine leukemia virus (BLV) is a causative agent for lymphoma disease in cattle including cows worldwide. BLV shares similar virion structure and characteristics with other retroviruses. The pol gene of the BLV genome produced reverse transcriptase (RT) and integrase (IN) for important roles for BLV genome integration into host cell chromosomes that is known to be coded in the 3' side of the BLV pol gene (one third portion). In this study, we have sequenced 978 bp in the 3' side of the BLV pol gene from BLV 10C3 in order to determine the BLV IN region of it. And we compared it to the nucleotide sequences of an Australian BLV isolate. As a result, nucleotide sequences of the IN region of the Korean-type BLV pol gene were mutated at a rate of 3.7%. We can confirm that the typical mutations are such as Arg (AGG) $\rightarrow$ Lys (AAG), Thr (ACG) $\rightarrow$ Met (ATG), Ile (ATT) $\rightarrow$ Val (GTT), Asn (ACC) $\rightarrow$ His (CAC), Phe (TTT) $\rightarrow$ Leu (TTG) and Asn (ACC) $\rightarrow$ Asp (GAC). From the analysis of the sequencing data, we were able to determine the zinc-finger-like "HHCC" motif in the amino terminus of BLV IN, that was H-$X_3$-H-$X_{25}-C-X_2$-C. It was also found the DD35E motif in the IN catalytic domain as D-$X_{56}$-D-$X_{35}$-E. It fits very well to the consensus sequences of retroviral IN as well as HHCC motif.

  • PDF

Identification of an Embryonic Growth Factor IGF-II from the Central Nervous System of the Teleost, Flounder, and Its Expressions in Adult Tissues

  • Kim, Dong-Soo;Kim, Young-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권1호
    • /
    • pp.113-118
    • /
    • 1999
  • The insulin-like growth factor (IGF) is found in all vertebrates and its type-II molecule is regarded as a fundamental embryonic growth factor during development. We have firstly identified, in this study, a cDNA clone corresponding to IGF-II (flIGF-II) from the adult brain of the teleost, Paralichthys olivaceus. We also examined the tissue expression of flIGF-II in several adult tissues by RT-PCR. The flIGF-II cDNA contained a complete ORF consisting of 215 amino acids and one stop codon. Its molecular characteristics appear to be similar to the previously identified IGF-II molecules, in which a common primary structure exhibiting B, C, A, D, and E domains is evidently observed. This cDNA clone seems to be cleaved at $Ala_{52}$ for the $NH_2$-end signal peptide and appears to produce a 98 amino acid-long E-peptide from the $Arg^{118}$. The functional B-D domain regions, therefore, include 65 amino acids and is able to encode a 7.4-kDa protein. The most prominent structural difference between IGF-I and IGF-II was that the D domain of IGF-II exhibits a two-codon-deleted pattern compared to the 8 amino acid-containing IGF-I. The insulin family signature in the A domain and six cysteins forming three disulfide bridges between the B and A domains were evolutionary-conserved from teleosts to mammalian IGF-II. Interestingly, the E-peptide region appears to provide a distinct hallmark between teleosts in amino acid composition. The flIGF-II shows 85.1% of sequence identity to salmon and trout, 90.6% to tilapia, and 98.4% to perch in amino acid level. In tissue expressions of IGF-II, it is very likely that flIGF-II has a significant expression in the adult brain. However, liver seems to be the main source for IGF-II production, and relatively low signals were observed in the adult muscle and kidney. Taken together, it would be concluded that the functional region for IGF-II mRNA is highly similar in phylogeny and is evolutionary, conserved as a mediator for the growth of vertebrates.

  • PDF

Expression of Neurotensin/Neuromedin N Precursor in Murine Mast Cells

  • Ahn, Hyun-Jong;Cho, Jeong-Je
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권6호
    • /
    • pp.495-501
    • /
    • 2001
  • We have cloned the mouse neurotensin/neuromedin N (NT/N) gene from the murine mast cell line Cl.MC/C57.1 for the first time. The murine NT/N cDNA clone consisted of 765 nucleotides and coded for 169 peptide residues with an N-terminal signal peptide, and the C-terminal region contained of one copy of neurotensin (NT) and one copy of neuromedin N (NN). Total of four Lys-Arg dibasic motifs were present; one each at the middle of the open reading frame, at the N-terminal of NN, at the C-terminal of NT, and between NN and NT. Amino acid sequence analysis of the mouse NT/N revealed 90% homology to that of the rat NT/N gene. NT/N is expressed in murine mast cell lines (Cl.MC/C57.1 and P815), but not in murine bone marrow-derived mast cells (BMMCs), murine macrophage cell line (RAW 264.7), nor in murine T cell line (EL-4). NT/N mRNA in C1.MC/C57.1 is highly inducible by IgE cross-linking, phorbol myristate acetate, neurotensin, and substance P. Following the treatment of demethylating agent, 5-azacytidine (5-azaC), the NT/N gene was induced in BMMCs in response to IgE cross-linking. 5-azaC-treated BMMCs did not express the NT/N gene without additional stimuli. These findings suggested that the regulation of NT/N gene expression was dependent on the effects of not only gene methylation but also enhancer and/or repressor proteins acting on the NT/N promoter.

  • PDF

Modification of ERα by UFM1 Increases Its Stability and Transactivity for Breast Cancer Development

  • Yoo, Hee Min;Park, Jong Ho;Kim, Jae Yeon;Chung, Chin Ha
    • Molecules and Cells
    • /
    • 제45권6호
    • /
    • pp.425-434
    • /
    • 2022
  • The post-translational modification (e.g., phosphorylation) of estrogen receptor α (ERα) plays a role in controlling the expression and subcellular localization of ERα as well as its sensitivity to hormone response. Here, we show that ERα is also modified by UFM1 and this modification (ufmylation) plays a crucial role in promoting the stability and transactivity of ERα, which in turn promotes breast cancer development. The elevation of ufmylation via the knockdown of UFSP2 (the UFM1-deconjugating enzyme in humans) dramatically increases ERα stability by inhibiting ubiquitination. In contrast, ERα stability is decreased by the prevention of ufmylation via the silencing of UBA5 (the UFM1-activating E1 enzyme). Lys171 and Lys180 of ERα were identified as the major UFM1 acceptor sites, and the replacement of both Lys residues by Arg (2KR mutation) markedly reduced ERα stability. Moreover, the 2KR mutation abrogated the 17β-estradiol-induced transactivity of ERα and the expression of its downstream target genes, including pS2, cyclin D1, and c-Myc; this indicates that ERα ufmylation is required for its transactivation function. In addition, the 2KR mutation prevented anchorage-independent colony formation by MCF7 cells. Most notably, the expression of UFM1 and its conjugating machinery (i.e., UBA5, UFC1, UFL1, and UFBP1) were dramatically upregulated in ERα-positive breast cancer cell lines and tissues. Collectively, these findings implicate a critical role attributed to ERα ufmylation in breast cancer development by ameliorating its stability and transactivity.

재조합 균주 Escherichia coli가 생산하는 Bacillus stearothermophilus Acetyl Xylan Esterase II의 정제 및 특성 (Purification and Characterization of Acetyl Xylan Esterase II from Escherichia coli Cells Harboring Recombinant Plasmid pKMG7)

  • 김희선;서정한;최용진
    • 한국미생물·생명공학회지
    • /
    • 제23권4호
    • /
    • pp.454-460
    • /
    • 1995
  • Acetylxylan esterase II was produced by Escherichia coli HB101 harboring the recombinant plasmid pKMG7 which contained the estII gene of Bacillus stearothermophilus. Optimal medium for the production of the acetylxylan esterase by E. coli HB101/pKMG7 was determined to contain 0.5% galactose, 1% yeast extract and 1% NaCl. The enzyme produced was purified to homogeneity using a combination of 20-50% ammonium sulfate precipitation, DEAE-Sepharose CL-6B chromatography and Sephacryl S-200 gel filtration. The temperature and pH optimum of the esterase were 45$\circ$C and pH 6, respectively. The essential amino acids for the esterase activity were found to be methionine, serine, and cysteine. Molecular weight of the esterase was determined to be 28 kDa by SDS-polyacrylamide gel electrophoresis, and 120 kDa by gel filtration. This suggests that the functional enzyme is a homomeric tetramer. The esterase had an isoelectric point of pH 3.4. The N-terminal amino acid sequence of the enzyme was Ala-Leu-Phe-Glu-Ser-Arg-Phe-Phe-Ser-Glu-Val-Leu-Gly-Leu.

  • PDF

Biochemical Characterization of Oligomerization of Escherichia coli GTP Cyclohydrolase I

  • Lee, Soo-Jin;Ahn, Chi-Young;Park, Eung-Sik;Hwang, Deog-Su;Yim, Jeong-Bin
    • BMB Reports
    • /
    • 제35권3호
    • /
    • pp.255-261
    • /
    • 2002
  • GTP cyclohydrolase I (E.C. 3.5.4.16) is a homodecameric protein that catalyzes the conversion of GTP to 7,8-dihydroneopterin triphosphate (H2NTP), the initial step in the biosynthesis of pteridines. It was proposed that the enzyme complex could be composed of a dimer of two pentamers, or a pentamer of tightly associated dimers; then the active site of the enzyme was located at the interface of three monomers (Nar et al. 1995a, b). Using mutant enzymes that were made by site-directed mutagenesis, we showed that a decamer of GTP cyclohydrolase I should be composed of a pentamer of five dimers, and that the active site is located between dimers, as analyzed by a series of size exclusion chromatography and the reconstitution experiment. We also show that the residues Lys 136, Arg139, and Glu152 are of particular importance for the oligomerization of the enzyme complex from five dimers to a decamer.

ADHESIVENESS EVALUATION OF ACTIVATED PLATELET USING Arg-Gly-Asp-Phe(RGDF)-IMMOBILIZED SURFACE

  • Kim, J.H.;Kim, H.J.;Kim, J.;Ryu, G.H.;Min, B.G.;Choe, T.B.
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.333-336
    • /
    • 1997
  • The adhesion of activated and normal platelets to fibrinogen requires the receptor binding site of GPIIb/IIIa. These recognition sites exists in the A ${\alpha}$ chain(RGDS at 572-575 and RGDF at 95-98) and the carboxy-terminal of ${\gamma}$ chain (HHLGGAKQAGDV at 400-411) of fibrinogen. In this study, we developed RGDF-immobilized surface to detect the unctional state of platelet. RGDF-immobilized surface was prepared on the glass using photolithographic technology. Platelet adhesion to RGDF-immobilized surface was observed by staining platelets with mepacrine using a fluorescence microscope using mepacrine. Using the RGDF peptide of fragment E, we observed that the platelets pretreated with PGE1 interacted incompletely with RGDF-immobilized surface, whereas ADP activated platelets interacted with the surface extensively. These results show that the distinct selectivity of RGDF-immobilized micro-patterned surface can be used to detect the unctional state of platelets.

  • PDF

A family with X-linked Cornelia de Lange syndrome due to a novel SMC1A missense mutation identified by multi-gene panel sequencing

  • Hong, Sungwon;Lee, Cha Gon
    • Journal of Genetic Medicine
    • /
    • 제15권1호
    • /
    • pp.24-27
    • /
    • 2018
  • Cornelia de Lange syndrome (CdLS) is a rare, clinically and genetically heterogeneous, multi-system developmental disorder caused by mutations in genes that encode components of the cohesin complex. X-linked CdLS caused by an SMC1A mutation is an extremely rare disease characterized by phenotypes milder than those of classic CdLS. In the Republic of Korea, based on a literature review, one family with SMC1A-related CdLS with mild phenotypes has been genetically confirmed to date. In this study, we describe the clinical features of a Korean boy with a hemizygous novel missense mutation and his mother with a heterozygous mutation, i.e., c.2447G>A (p.Arg816His) in SMC1A, identified by multi-gene panel sequencing. The proband had a mild phenotype with typical facial features and his mother exhibited a mild, subclinical phenotype. This study expands the clinical spectrum of patients with X-linked CdLS caused by SMC1A variants. Moreover, these findings reinforce the notion that a dominant negative effect in a carrier female with a heterozygous mutation in SMC1A results in a phenotype milder than that in a male patient with the same mutation.