• Title/Summary/Keyword: Arg194Trp

Search Result 21, Processing Time 0.019 seconds

DNA Repair Gene Associated with Clinical Outcome of Epithelial Ovarian Cancer Treated with Platinum-based Chemotherapy

  • Kang, Shan;Sun, Hai-Yan;Zhou, Rong-Miao;Wang, Na;Hu, Pei;Li, Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.941-946
    • /
    • 2013
  • Objective: The nucleotide excision repair (NER) and base excision repair (BER) pathways, two DNA repair pathways, are related to platinum resistance in cancer treatment. In this paper, we studied the association between single nucleotide polymorphisms (SNPs) of involved genes and response to platinum-based chemotherapy in epithelial ovarian cancer. Method: Eight SNPs in XRCC1 (BER), XPC and XPD (NER) were assessed in 213 patients with epithelial ovarian cancer using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) techniques. Results: The median progression-free survival (PFS) of patients carrying the Lys/Lys and Lys/Gln+Gln/Gln genotype of the XPC Lys/Gln polymorphism were 25 and 12 months, respectively (P=0.039); and the mean overall survival (OS) of patients was 31.1 and 27.8 months, respectively (P=0.048). Cox's multivariate analysis suggested that patients with epithelial ovarian cancer with the Gln allele had an increased risk of death (HR=1.75; 95% CI=1.06-2.91) compared to those with the Lys/Lys genotype. There are no associations between the XPC PAT+/-, XRCC1 Arg194Trp, Arg280His, Arg399Gln, and XPD Asp312Asn, Lys751Gln polymorphisms and the survival of patients with epithelial ovarian cancer when treated with platinum-based chemotherapy. Conclusion: Our results indicated that the XPC Lys939Gln polymorphism may correlate with clinical outcome of patients with epithelial ovarian cancer when treated with platinum-based chemotherapy in Northern China.