• 제목/요약/키워드: Area-to-point regression kriging (ATPRK)

검색결과 3건 처리시간 0.016초

Development of an R-based Spatial Downscaling Tool to Predict Fine Scale Information from Coarse Scale Satellite Products

  • Kwak, Geun-Ho;Park, No-Wook;Kyriakidis, Phaedon C.
    • 대한원격탐사학회지
    • /
    • 제34권1호
    • /
    • pp.89-99
    • /
    • 2018
  • Spatial downscaling is often applied to coarse scale satellite products with high temporal resolution for environmental monitoring at a finer scale. An area-to-point regression kriging (ATPRK) algorithm is regarded as effective in that it combines regression modeling and residual correction with area-to-point kriging. However, an open source tool or package for ATPRK has not yet been developed. This paper describes the development and code organization of an R-based spatial downscaling tool, named R4ATPRK, for the implementation of ATPRK. R4ATPRK was developed using the R language and several R packages. A look-up table search and batch processing for computation of ATP kriging weights are employed to improve computational efficiency. An experiment on spatial downscaling of coarse scale land surface temperature products demonstrated that this tool could generate downscaling results in which overall variations in input coarse scale data were preserved and local details were also well captured. If computational efficiency can be further improved, and the tool is extended to include certain advanced procedures, R4ATPRK would be an effective tool for spatial downscaling of coarse scale satellite products.

영역-점 회귀 크리깅 기반 다중센서 위성영상의 공간-분광 융합: 고해상도 적색 경계 및 단파 적외선 밴드 생성 실험 (Spatio-spectral Fusion of Multi-sensor Satellite Images Based on Area-to-point Regression Kriging: An Experiment on the Generation of High Spatial Resolution Red-edge and Short-wave Infrared Bands)

  • 박소연;강솔아;박노욱
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.523-533
    • /
    • 2022
  • 이 논문에서는 상호보완적인 공간 및 분광해상도를 가진 다중센서 위성영상을 이용하여 공간해상도와 분광해상도를 향상시키기 위해 영역-점 회귀 크리깅(area-to-point regression kriging, ATPRK) 기반의 2단계 spatio-spectral fusion method (2SSFM)을 제안하였다. 2SSFM은 ATPRK와 random forest 회귀 모형을 결합하여 다중센서 위성영상에서 높은 공간해상도를 갖는 분광 밴드를 예측한다. 첫 번째 단계에서는 다중센서 위성영상 사이의 공간해상도 차이를 감소시키기 위해 ATPRK 기반 공간 상세화를 수행한다. 두 번째 단계에서는 다중센서 위성영상 사이의 분광 밴드의 관계성을 정량화하기 위해 random forest를 이용한 회귀 모델링을 적용하였다. 2SSFM의 예측 성능은 적색 경계와 단파 적외선 밴드를 생성하는 사례 연구를 통해 평가하였다. 사례 연구에서 2SSFM은 실제 분광 밴드와 유사한 분광패턴을 보이면서 공간해상도가 향상된 적색 경계와 단파 적외선 밴드를 생성할 수 있었으며, 2SSFM가 고해상도 위성영상에서 제공하지 않은 분광 밴드 생성에 유용함을 확인할 수 있었다. 따라서 2SSFM을 통해 실제로 획득 불가능하지만 환경 모니터링에 효과적인 분광 밴드를 예측함으로써 다양한 분광 지수를 생성할 수 있을 것으로 기대된다.

Ensemble Downscaling of Soil Moisture Data Using BMA and ATPRK

  • Youn, Youjeong;Kim, Kwangjin;Chung, Chu-Yong;Park, No-Wook;Lee, Yangwon
    • 대한원격탐사학회지
    • /
    • 제36권4호
    • /
    • pp.587-607
    • /
    • 2020
  • Soil moisture is essential information for meteorological and hydrological analyses. To date, many efforts have been made to achieve the two goals for soil moisture data, i.e., the improvement of accuracy and resolution, which is very challenging. We presented an ensemble downscaling method for quality improvement of gridded soil moisture data in terms of the accuracy and the spatial resolution by the integration of BMA (Bayesian model averaging) and ATPRK (area-to-point regression kriging). In the experiments, the BMA ensemble showed a 22% better accuracy than the data sets from ESA CCI (European Space Agency-Climate Change Initiative), ERA5 (ECMWF Reanalysis 5), and GLDAS (Global Land Data Assimilation System) in terms of RMSE (root mean square error). Also, the ATPRK downscaling could enhance the spatial resolution from 0.25° to 0.05° while preserving the improved accuracy and the spatial pattern of the BMA ensemble, without under- or over-estimation. The quality-improved data sets can contribute to a variety of local and regional applications related to soil moisture, such as agriculture, forest, hydrology, and meteorology. Because the ensemble downscaling method can be applied to the other land surface variables such as temperature, humidity, precipitation, and evapotranspiration, it can be a viable option to complement the accuracy and the spatial resolution of satellite images and numerical models.