• 제목/요약/키워드: Area-based Feature Weighting

검색결과 8건 처리시간 0.018초

성공적인 ERP 시스템 구축 예측을 위한 사례기반추론 응용 : ERP 시스템을 구현한 중소기업을 중심으로 (An Application of Case-Based Reasoning in Forecasting a Successful Implementation of Enterprise Resource Planning Systems : Focus on Small and Medium sized Enterprises Implementing ERP)

  • 임세헌
    • Journal of Information Technology Applications and Management
    • /
    • 제13권1호
    • /
    • pp.77-94
    • /
    • 2006
  • Case-based Reasoning (CBR) is widely used in business and industry prediction. It is suitable to solve complex and unstructured business problems. Recently, the prediction accuracy of CBR has been enhanced by not only various machine learning algorithms such as genetic algorithms, relative weighting of Artificial Neural Network (ANN) input variable but also data mining technique such as feature selection, feature weighting, feature transformation, and instance selection As a result, CBR is even more widely used today in business area. In this study, we investigated the usefulness of the CBR method in forecasting success in implementing ERP systems. We used a CBR method based on the feature weighting technique to compare the performance of three different models : MDA (Multiple Discriminant Analysis), GECBR (GEneral CBR), FWCBR (CBR with Feature Weighting supported by Analytic Hierarchy Process). The study suggests that the FWCBR approach is a promising method for forecasting of successful ERP implementation in Small and Medium sized Enterprises.

  • PDF

Intention Classification for Retrieval of Health Questions

  • Liu, Rey-Long
    • International Journal of Knowledge Content Development & Technology
    • /
    • 제7권1호
    • /
    • pp.101-120
    • /
    • 2017
  • Healthcare professionals have edited many health questions (HQs) and their answers for healthcare consumers on the Internet. The HQs provide both readable and reliable health information, and hence retrieval of those HQs that are relevant to a given question is essential for health education and promotion through the Internet. However, retrieval of relevant HQs needs to be based on the recognition of the intention of each HQ, which is difficult to be done by predefining syntactic and semantic rules. We thus model the intention recognition problem as a text classification problem, and develop two techniques to improve a learning-based text classifier for the problem. The two techniques improve the classifier by location-based and area-based feature weightings, respectively. Experimental results show that, the two techniques can work together to significantly improve a Support Vector Machine classifier in both the recognition of HQ intentions and the retrieval of relevant HQs.

퍼지 k-Nearest Neighbors 와 Reconstruction Error 기반 Lazy Classifier 설계 (Design of Lazy Classifier based on Fuzzy k-Nearest Neighbors and Reconstruction Error)

  • 노석범;안태천
    • 한국지능시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.101-108
    • /
    • 2010
  • 본 논문에서는 퍼지 k-NN과 reconstruction error에 기반을 둔 feature selection을 이용한 lazy 분류기 설계를 제안하였다. Reconstruction error는 locally linear reconstruction의 평가 지수이다. 새로운 입력이 주어지면, 퍼지 k-NN은 local 분류기가 유효한 로컬 영역을 정의하고, 로컬 영역 안에 포함된 데이터 패턴에 하중 값을 할당한다. 로컬 영역과 하중 값을 정의한 우에, feature space의 차원을 감소시키기 위하여 feature selection이 수행된다. Reconstruction error 관점에서 우수한 성능을 가진 여러 개의 feature들이 선택 되어 지면, 다항식의 일종인 분류기가 하중 최소자승법에 의해 결정된다. 실험 결과는 기존의 분류기인 standard neural networks, support vector machine, linear discriminant analysis, and C4.5 trees와 비교 결과를 보인다.

입술정보를 이용한 음성 특징 파라미터 추정 및 음성인식 성능향상 (Estimation of speech feature vectors and enhancement of speech recognition performance using lip information)

  • 민소희;김진영;최승호
    • 대한음성학회지:말소리
    • /
    • 제44호
    • /
    • pp.83-92
    • /
    • 2002
  • Speech recognition performance is severly degraded under noisy envrionments. One approach to cope with this problem is audio-visual speech recognition. In this paper, we discuss the experiment results of bimodal speech recongition based on enhanced speech feature vectors using lip information. We try various kinds of speech features as like linear predicion coefficient, cepstrum, log area ratio and etc for transforming lip information into speech parameters. The experimental results show that the cepstrum parameter is the best feature in the point of reconition rate. Also, we present the desirable weighting values of audio and visual informations depending on signal-to-noiso ratio.

  • PDF

그라프에서의 휴리스틱 탐색에 관한 연구 (A Study on the Heuristic Search Algorithm on Graph)

  • 김명재;정태충
    • 한국정보처리학회논문지
    • /
    • 제4권10호
    • /
    • pp.2477-2484
    • /
    • 1997
  • $A^{\ast}$와 같은 Best-first 휴리스틱 탐색 알고리즘들은 인공지능 분야에서 많은 문제를 해결하는데 가장 중요한 기법들 중의 하나이다. 휴리스틱 탐색의 공통적 특성은 계산의 복잡도가 매우 높다는 것이며, 이는 수많은 노드를 가진 지도에서 경로를 찾는 것과 같은 실질적인 문제 영역에 적용되기 어렵다는 것을 나타낸다. 본 논문에서는, 몇몇 휴리스틱 탐색 알고리즘이 언급되고, path-sensitive heuristic이라 불리는 새로운 동적 가중치 휴리스틱 방법이 제안되었다. 이 방법은 동적 가중치 휴리스틱에 기초하였고, 동적 휴리스틱은 admissible heuristic을 허용하지 않거나 휴리스틱의 정확도가 떨어지는 실제 문제 영역에서 탐색 노력을 줄이는데 사용될 수 있다. 탐색 과정 동안 ${\omega}$(가중치)가 동적으로 조정된다는 점에서, 다른 동적 가중치 휴리스틱 알고리즘과 구분된다.

  • PDF

다중 관측열을 토대로한 HMM에 의한 음성 인식에 관한 연구 (A study on the speech recognition by HMM based on multi-observation sequence)

  • 정의봉
    • 전자공학회논문지S
    • /
    • 제34S권4호
    • /
    • pp.57-65
    • /
    • 1997
  • The purpose of this paper is to propose the HMM (hidden markov model) based on multi-observation sequence for the isolated word recognition. The proosed model generates the codebook of MSVQ by dividing each word into several sections followed by dividing training data into several sections. Then, we are to obtain the sequential value of multi-observation per each section by weighting the vectors of distance form lower values to higher ones. Thereafter, this the sequential with high probability value while in recognition. 146 DDD area names are selected as the vocabularies for the target recognition, and 10LPC cepstrum coefficients are used as the feature parameters. Besides the speech recognition experiments by way of the proposed model, for the comparison with it, the experiments by DP, MSVQ, and genral HMM are made with the same data under the same condition. The experiment results have shown that HMM based on multi-observation sequence proposed in this paper is proved superior to any other methods such as the ones using DP, MSVQ and general HMM models in recognition rate and time.

  • PDF

공간 위치 정보를 적합성 피드백을 위한 가중치로 사용하는 영역 기반 이미지 검색 시스템 (Region-Based Image Retrieval System using Spatial Location Information as Weights for Relevance Feedback)

  • 송재원;김덕환;이주홍
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권4호
    • /
    • pp.1-7
    • /
    • 2006
  • 최근 이미지 검색은 검색의 정확성을 높이고자 사용자의 요구를 반영하는 적합성 피드백에 관한 연구가 활발히 진행되고 있다. 본 논문은 이미지 검색 시 나타나는 고수준 개념과 저수준 특징 사이의 의미적 격차를 줄이기 위하여 적합성 피드백에 기반한 영역 기반 이미지 검색의 가중치 기법에 대해서 논의하고 새로운 가중치 기법을 제안한다. 새롭게 제시된 가중치 기법은 한 이미지에 존재하는 영역들의 공간적 위치에 따라 영역의 중요성을 결정한다. 실험 결과는 본 논문에서 제시된 가중치 기법이 평균 재현율에 있어서 크기 백분율 가중치 기법에 비해 약 18%, 역 이미지 빈도수를 적용한 영역 빈도수 가중치 기법에 비해 약 11% 가량 높게 나타나는 것을 보이고 있으며, 검색 시간에 있어서도 영역 빈도수 가중치에 비해 약 1/10인 것을 보이고 있다.

  • PDF

Zoning Permanent Basic Farmland Based on Artificial Immune System coupling with spatial constraints

  • Hua, Wang;Mengyu, Wang;Yuxin, Zhu;Jiqiang, Niu;Xueye, Chen;Yang, Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권5호
    • /
    • pp.1666-1689
    • /
    • 2021
  • The red line of Permanent Basic Farmland is the most important part in the "three-line" demarcation of China's national territorial development plan. The scientific and reasonable delineation of the red line is a major strategic measure being taken by China to improve its ability to safeguard the practical interests of farmers and guarantee national food security. The delineation of Permanent Basic Farmland zoning (DPBFZ) is essentially a multi-objective optimization problem. However, the traditional method of demarcation does not take into account the synergistic development goals of conservation of cultivated land utilization, ecological conservation, or urban expansion. Therefore, this research introduces the idea of artificial immune optimization and proposes a multi-objective model of DPBFZ red line delineation based on a clone selection algorithm. This research proposes an objective functional system consisting of these three sub-objectives: optimal quality of cropland, spatially concentrated distribution, and stability of cropland. It also takes into consideration constraints such as the red line of ecological protection, topography, and space for major development projects. The mathematical formal expressions for the objectives and constraints are given in the paper, and a multi-objective optimal decision model with multiple constraints for the DPBFZ problem is constructed based on the clone selection algorithm. An antibody coding scheme was designed according to the spatial pattern of DPBFZ zoning. In addition, the antibody-antigen affinity function, the clone mechanism, and mutation strategy were constructed and improved to solve the DPBFZ problem with a spatial optimization feature. Finally, Tongxu County in Henan province was selected as the study area, and a controlled experiment was set up according to different target preferences. The results show that the model proposed in this paper is operational in the work of delineating DPBFZ. It not only avoids the adverse effects of subjective factors in the delineation process but also provides multiple scenarios DPBFZ layouts for decision makers by adjusting the weighting of the objective function.