• Title/Summary/Keyword: Area Sub-Division

Search Result 410, Processing Time 0.025 seconds

Geographical Characteristics of PM2.5, PM10 and O3 Concentrations Measured at the Air Quality Monitoring Systems in the Seoul Metropolitan Area (수도권 지역 도시대기측정소 PM2.5, PM10, O3 농도의 지리적 분포 특성)

  • Kang, Jung-Eun;Mun, Da-Som;Kim, Jae-Jin;Choi, Jin-Young;Lee, Jae-Bum;Lee, Dae-Gyun
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.657-664
    • /
    • 2021
  • In this study, we investigated the relationships between the air quality (PM2.5, PM10, O3) concentrations and local geographical characteristics (terrain heights, building area ratios, population density in 9 km × 9 km gridded subareas) in the Seoul metropolitan area. To analyze the terrain heights and building area ratios, we used the geographic information system data provided by the NGII (National Geographic Information Institute). Also, we used the administrative districts and population provided by KOSIS (Korean Statistical Information Service) to estimate population densities. We analyzed the PM2.5, PM10, and O3 concentrations measured at the 146 AQMSs (air quality monitoring system) within the Seoul metropolitan area. The analysis period is from January 2010 to December 2020, and the monthly concentrations were calculated by averaging the hourly concentrations. The terrain is high in the northern and eastern parts of Gyeonggi-do and low near the west coastline. The distributions of building area ratios and population densities were similar to each other. During the analysis period, the monthly PM2.5 and PM10 concentrations at 146 AQMSs were high from January to March. The O3 concentrations were high from April to June. The population densities were negatively correlated with PM2.5, PM10, and O3 concentrations (weakly with PM2.5 and PM10 but strongly with O3). On the other hand, the AQMS heights showed no significant correlation with the pollutant concentrations, implying that further studies on the relationship between terrain heights and pollutant concentrations should be accompanied.

Photocatalytic Epoxidation of Olefins Using Molecular O2 by TiO2 Incorporated in Hydrophobic Y Zeolite

  • Kuwahara, Yasutaka;Magatani, Yasuhiro;Yamashita, Hiromi
    • Rapid Communication in Photoscience
    • /
    • v.4 no.1
    • /
    • pp.19-21
    • /
    • 2015
  • Zeolite is an ideal host material for encapsulating nano-size metal catalyst species because of its defined microporous structure, prominent adsorption/condensation properties, high surface area, chemical/thermal stability, and transparency to light. In this study, $TiO_2$ photocatalyst was incorporated in highly hydrophobic Y zeolite and its photocatalytic activity was examined in the photocatalytic oxidation of olefins under UV-light irradiation using molecular oxygen as an oxygen source. $TiO_2$ nanoparticles incorporated in hydrophobic Y zeolite exhibited a markedly enhanced photocatalytic activity compared with bare $TiO_2$ owing to its excellent affinity toward organic moieties, which facilitates the mass transfer of organic substrates and allows them to efficiently access to the neighboring active $TiO_2$ surface.

Geochemical Evolution of Mixing Zone with Freshwater and Seawater near the Coast Area during Underground Space Construction (지하공간건설 시 해안인근 담수-해수 혼합대의 지화학적 진화)

  • Kim, Jiyeon;Kim, Byung-Woo;Kwon, Jang-Soon;Koh, Yong-Kwon
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.90-102
    • /
    • 2015
  • To understand the hyrogeochemical variation of bedrock aquifer during underground space construction, various graphical methods including multiple-component plots and chemical trends were used to estimate the mixing rate between seawater and freshwater and to investigate the evolution of water quality. The water chemistry and mixing rate between fresh and sea waters, which are generally localized in the construction area (MW-7, in land), shows typical characteristics of freshwater that doesn’t affect its validity as seawater intrusion. Especially, the water chemistry of a MW-4 (coastline) was classified as Na-Cl type, Na-HCO3 type, and Ca-Cl type due to the influence of the seawater intrusion. And hydrogeochemical and isotopic data show that local freshwater is subjected to geochemical processes, such as reverse ion-exchange. Throughout the Chadha’s diagrams, four different case histories with the temporal and spatial variation of groundwaters in the study area were proposed, which is recommended to interpret the hydrogeochemical reactions effectively.

SiO2-CaO-MnO Correlations and Distributions of KODOS Manganese Nodules (KODOS 망간단괴의 SiO2-CaO-MnO 상관관계와 분포양상)

  • Chang, Se-Won;Choi, Hun-Soo;Kang, Jung-Seok;Kong, Gee-Soo;Lee, Sung-Rock;Chang, Jeong-Hae
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.199-205
    • /
    • 2004
  • $SiO_2$ and CaO are added to decrease the smelting temperature in the reduction-smelting method for manganese nodule processing. These elements are components of the manganese nodules and might be very important controlling factors in the processing due to the locally variable content. The 707 chemical data of manganese nodules acquired from 1994 to 2001 in KODOS(Korea Deep Ocean Survey) area were used for the hierarchical cluster analysis. The chemical data were classified by the morphological types, and the averages of the chemical data for each station were classified by the facies groups and the localities. All data are plotted on the $SiO_2-CaO-MnO$ phase diagram at $1773^{\circ}K$ to compare with the best compositional area in the nodule smelting. Variations and distributions of $SiO_2$ and CaO in KODOS nodules were also reviewed. The mineral phases assigned by the cluster analysis are CFA(Carbonate Fluorapatite), Fe-oxide, Al-silicate, and Mn-oxide. MnO contents are generally higher than $SiO_2$ contents in most of the morphological types except for the Is- and It-type. The Dt- and Tt-type show wider range and the E-types show high anomaly in their CaO contents. The stations which belong to facies group A and B show generally higher MnO contents than $SiO_2$ contents, however, the stations of facies group C and D show wide range in their MnO and $SiO_2$ contents. It seems to be very important to control the $SiO_2$ contents in the processing because of the wide range in the northern area. The additions of approximately 10 wt.% CaO and 10 wt.% $SiO_2$ are recommended for the northern area, whereas, the additions of approximately 10 wt.% CaO and 20 wt.% $SiO_2$ are recommended for the southern area.

Petrological Properties of Flat Stones from the Obongsan Mountain Quarry Used for Flooring in Ondol

  • Kim, Jae Hwan;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.37 no.4
    • /
    • pp.380-390
    • /
    • 2021
  • The purpose of this study is to scientifically analyze the rocks of the Obongsan Mountain in Boseong, Jeollanam-do, which contains the largest extant quarry of Gudlejang (flat stone for heating) in Korea, and to scientifically determine the petrological characteristics of the area and the reasons for its use as a quarry. The rocks in the quarry are composed of light-green lapilli tuff, containing various types of lithic fragments and crystalline fragments in a vitreous matrix consisting of the fine feldspar crystals. The main constituent minerals were identified as quartz, plagioclase, mica, chlorite and opaque minerals. When the major element compositions were plotted on a Na2O+K2O versus SiO2 diagram, all samples were situated in the same compositional area as rhyolite. In addition, the result of magnetic susceptibility measurement also showed a similar range of values, of 1.30 ~ 4.85 (×10-3 SI), indicating that samples were fractionated from the same magma. Both rock types showed similar apparent specific gravity values of 2.32 ~ 2.60. In particular, plate-shaped joints are well developed in the Obongsan Mountain area, and many areas exhibit talus terrain. In conclusion, the rocks of this area is interpreted to used for a site of Gudlejang quarrying, because the rocks were easily obtainable due to the terrain characteristics, and their petrological properties made them suitable for use as Gudlejang stone.

An Advanced RFID Localization Algorithm Based on Region Division and Error Compensation

  • Li, Junhuai;Zhang, Guomou;Yu, Lei;Wang, Zhixiao;Zhang, Jing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.670-691
    • /
    • 2013
  • In RSSI-based RFID(Radio Frequency IDentification) indoor localization system, the signal path loss model of each sub-region is different from others in the whole localization area due to the influence of the multi-path phenomenon and other environmental factors. Therefore, this paper divides the localization area into many sub-regions and constructs separately the signal path loss model of each sub-region. Then an improved LANDMARC method is proposed. Firstly, the deployment principle of RFID readers and tags is presented for constructing localization sub-region. Secondly, the virtual reference tags are introduced to create a virtual signal strength space with RFID readers and real reference tags in every sub-region. Lastly, k nearest neighbor (KNN) algorithm is used to locate the target object and an error compensating algorithm is proposed for correcting localization result. The results in real application show that the new method enhances the positioning accuracy to 18.2% and reduces the time cost to 30% of the original LANDMARC method without additional tags and readers.

CFD Simulations of the Trees' Effects on the Reduction of Fine Particles (PM2.5): Targeted at the Gammandong Area in Busan (수목의 초미세먼지(PM2.5) 저감 효과에 대한 CFD 수치 모의: 부산 감만동 지역을 대상으로)

  • Han, Sangcheol;Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.851-861
    • /
    • 2022
  • In this study, we analyzed the effects of trees planted in urban areas on PM2.5 reduction using a computational fluid dynamics (CFD) model. For realistic numerical simulations, the meteorological components(e.g., wind velocity components and air temperatures) predicted by the local data assimilation and prediction system (LDAPS), an operational model of the Korea Meteorological Administration, were used as the initial and boundary conditions of the CFD model. The CFD model was validated against, the PM2.5 concentrations measured by the sensor networks. To investigate the effects of trees on the PM2.5 reduction, we conducted the numerical simulations for three configurations of the buildings and trees: i) no tree (NT), ii) trees with only drag effect (TD), and iii) trees with the drag and dry-deposition effects (DD). The results showed that the trees in the target area significantly reduced the PM2.5 concentrations via the dry-deposition process. The PM2.5 concentration averaged over the domain in DD was reduced by 5.7 ㎍ m-3 compared to that in TD.

Current Status of AERONET Observations in South Korea and Analysis of Long-Term Changes in Aerosol Optical Depth and Aerosol Distribution (국내 AERONET 관측 현황과 장기간 에어로졸 광학 깊이의 변화 및 에어로졸 분포 분석)

  • Seonghyeon Jang;Junshik Um
    • Atmosphere
    • /
    • v.34 no.3
    • /
    • pp.233-255
    • /
    • 2024
  • This study analyzed the distribution of Aerosol Robotic Network (AERONET) Version 3 Level 2.0 data, spanning over two decades, across South Korea and its six administrative regions (Seoul metropolitan area, Chungcheong, Jeolla, Gangwon, Gyeongsang, and Jeju). The research assessed long-term trends in aerosol optical depth (AOD) and mass concentration of particulate matter (i.e., PM10 and PM2.5), using data from the AERONET direct sun product and AirKorea, respectively. Additionally, eight aerosol types were identified using the scattering Ångström exponent and absorption Ångström exponent from the AERONET inversion product. The study further explored their domestic and regional distributions. Findings indicated that AERONET data were predominantly concentrated in the western regions of South Korea, including the Seoul metropolitan area, Chungcheong, and Jeolla, with a higher frequency of data in spring, thus demonstrating spatial and temporal heterogeneity. The annual average AOD exhibited a declining trend of -0.006 yr-1. Similarly, PM10 and PM2.5 mass concentrations decreased by -1.324 ㎍ m-3 yr-1 and -1.335 ㎍ m-3 yr-1, respectively. These trends in AOD and PM10 (PM2.5) demonstrated positive correlations, with correlation coefficients of 0.674 (0.753) and statistically significant low p-values of 0.00058 (0.03), respectively. The analysis also revealed that aerosols in South Korea predominantly consisted of black carbon (BC) or BC-mixed types (84.09%), with a notable presence of smaller, less absorbent aerosol types (13.11%).

Synthesis of TiO2 nanoparticles induced by electron beam irradiation and their electrochemical performance as anode materials for Li-ion batteries

  • Ahn, Ja-Hwa;Eom, Ji-Yong;Kim, Jong-Huy;Kim, Hye Won;Lee, Byung Cheol;Kim, Sung-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.75-80
    • /
    • 2015
  • We introduce a new synthesis method to prepare small TiO2 nanoparticles with a narrow particle size distribution, which is achieved by electron beam (E-beam) irradiation. The effects of E-beam irradiation on the synthesis of TiO2 nanoparticles and the electrochemical performance of TiO2 nanoparticles as alternative anode materials for Li-ion batteries are investigated. The TiO2 nanoparticles induced by E-beam irradiation present better cycling performance and rate capability than the TiO2 nanoparticles synthesized by normal hydrolysis reaction. The better electrochemical performance is attributed to small particle size and narrow particle size distribution, resulting in the large surface area that provides innumerable reaction sites and short diffusion length for Li+ through TiO2 nanoparticles.

Characteristics of Aquifer System and Change of Groundwater Level due to Earthquake in the Western Half of Jeju Island (제주도 서반부의 대수층 체계와 지진에 의한 지하수위 변동 특성)

  • Ok, Soon-Il;Hamm, Se-Yeong;Kim, Bong-Sang;Cheong, Jae-Yeol;Woo, Nam-Chil;Lee, Soo-Hyoung;Koh, Gi-Won;Park, Yun-Seok
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.359-369
    • /
    • 2010
  • This study characterizes aquifer system and hydrogeologic property in the western half of Jeju Island where wells were drilled for regional water supply in three sub-areas (northwestern, western, and southwestern sub-areas). The aquifer system of the northwestern sub-area is largely composed of upper high-permeability layer, upper low-permeability layer, lower high-permeability layer, and lower low-permeability layer. On the other hand, the aquifer systems of the western and southwestern sub-areas are mostly composed of upper low-permeability layer, high-permeability layer, and lower low-permeability layer. Transmissivity and specific capacity decrease in the order of the northwestern, western, and southwestern sub-areas. The relationship between specific capacity and the top surface of tuff is negative with a high correlation coefficient of -0.848, indicating that the tuff acts as the bottom of the aquifer. Groundwater level change due to the 2004 Sumatra earthquake is an average of 23.74 cm in the northwestern sub-area, an average of 9.48 cm in the western sub-area, and none in the southwestern sub-area. Further, it is found that groundwater change due to the earthquake has a positive relationship with transmissivity and specific capacity.