• Title/Summary/Keyword: Arduino WiDo

Search Result 2, Processing Time 0.016 seconds

Development of Smart Garden Control System Using Probabilistic Filter Algorithm Based on SLAM (SLAM기반 확률적 필터 알고리즘을 이용한 스마트 식물 제어 시스템 개발)

  • Lee, Yang-Weon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.3
    • /
    • pp.465-470
    • /
    • 2017
  • This paper designs and implements a smart garden system using probabilistic filter algorithm using SLAM that can be used in apartment or veranda. To do this, we used Arduino and environtal sensors, which are open hardware controllers, and designed to control and observe automatic water supply, lighting, and growth monitoring with three wireless systems (Bluetooth, Ethernet, WiFi). This system has been developed to make it possible to use it in an indoor space such as an apartment, rather than a large-scale cultivation system such as a conventional plant factory which has already been widely used. The developed system collects environmental data by using soil sensor, illuminance sensor, humidity sensor and temperature sensor as well as control through smartphone app, analyzes the collected data, and controls water pump, LED lamp, air ventilation fan and so on. As a wireless remote control method, we implemented Bluetooth, Ethernet and WiFi. Finally, it is designed for users to enable remote control and monitoring when the user is not in the house.

A Study on the Production of a Convergence Color-Responsive Lighting Bookcase (색상에 반응하는 융복합 조명 책꽂이 제작에 관한 연구)

  • Kang, Hee-Ra
    • Journal of Digital Convergence
    • /
    • v.13 no.6
    • /
    • pp.267-273
    • /
    • 2015
  • Recently, a wide range of products incorporating cutting-edge technology are being introduced in various sectors of design. Belkin's WeMo or Phillips' Hue are representative examples. In this context, the color-responsive lighting bookcase is a design product that would satisfy the needs of contemporary consumers who seek entertainment in their purchases. By installing lightings that change color according to the user's behavior, this design reconceptualizes the bookcase as a source of entertainment rather than a mundane object of household furnishing. The lighting apparatus can be detached and reattached, serving as stand-alone equipment. The lighting bookcase is modularized, comprising extensions equipped with MCU (Micro Controller Unit), RGB LED and color sensors. The bookcase as a whole is extendable towards four directions up to nine units with the lighting bookcase at the center. The extended, multiple lighting bookcases are wired to receive power from the main bookcase, and are equipped with RGB LEDs but not with MCUs or color sensors. Receiving power and color signals from the main lighting bookcase, the sub-bookcases feature changing shades of color. Also, it includes IoT(internet of Things). This study is a proposal of a design product, modularized to control the shades of the bookcase lighting using these sensors.