• Title/Summary/Keyword: Arduino LED

Search Result 68, Processing Time 0.027 seconds

A Study on the Development of LED Stage Costume Design Using Arduino LilyPad and Sound Sensor (아두이노 릴리패드와 사운드 센서를 이용한 LED 무대의상 디자인 개발 연구)

  • Na, Yoonhee;Tang, Chunxiao;Han, Rui;Kim, Sookjin
    • Journal of Fashion Business
    • /
    • v.25 no.1
    • /
    • pp.133-149
    • /
    • 2021
  • This study presents a new fashion wearable product, a classical music stage costume design, using an Arduino LilyPad that can control light-emitting diodes(LEDs) and a sound sensor that can set an environmental range of LED light. As a theoretical background, LED fashion design research and stage costume design research status were reviewed, and Arduino LilyPads, sensors, LEDs, and batteries required for LED stage costume production were investigated. Based on prior research, the LED stage costume design for the soprano stage was presented in a three-step process of design planning, development, and production, and an actual prototype was produced. This process produced meaningful information and materials for making clothes with the added function of a wearable computer. In particular, fashion designers or fashion majors can easily access the Arduino LillyPad and use not only LEDs, but other light emitting materials. It is expected that it will be used as a basic material for the use of the Arduino LillyPad that can develop new creations that have been utilized.

Design of Action Monitoring System Using Arduino Sensors and LEDs (아두이노 센서와 LED를 활용한 움직임 모니터링 시스템 설계)

  • Park, Kyeongseok;Hwang, Soyoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.81-83
    • /
    • 2017
  • 우리 삶의 다양한 분야에서 ICT 기술을 적용하여 편의성과 활용성이 증대되고 있다. 본 논문에서는 최근 다양한 응용에 활용되고 있는 아두이노(Arduino)를 기반으로 사람의 움직임에 따라 이용할 수 있는 Accelerometer와 FSR 센서를 사용하여 RGB LED Strip을 제어하고 여러가지 색상을 다양한 패턴으로 나타나게 하며, 해당 움직임을 모니터링할 수 있는 시스템을 제안한다. 이는 사람의 움직임 또는 동작을 취하는 다양한 신체부위에 적용해 볼 수 있다.

  • PDF

Design and Implementation of LED Lighting Control System Using Arduino Yun and Cloud in IoT (사물인터넷에 아두이노 윤과 클라우드를 이용한 LED 조명 제어 시스템 설계)

  • Xu, Hao;Kim, Chul-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.10
    • /
    • pp.983-988
    • /
    • 2016
  • Internet of Things Iranian people and things, things and things are connected through the Cloud. It can significantly save energy through a combination of LED lighting as a new ICT technologies and industry-to provide a human-centric, eco-friendly, and the content is embedded multifunction solutions that meet your needs, environment, implementation time according to user requirements, technology It can be systematized as converged next-generation lighting. In this paper, we have developed regarding whether the building in relation to the LED lighting control system using smart devices and Cloud-based user as a human connection through the board to the Arduino Yun lit LED lighting, wireless smart device or to the Cloud or off. After the Arduino Yun is connected to the Internet, taking the current date and time information from the Linux shell command used the way coming across the bridge (BRIDGE) its value.

Smart LED Cycling Helmet using Arduino (아두이노를 이용한 스마트 LED 사이클링 헬멧)

  • Ahn, Sungwoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.386-389
    • /
    • 2016
  • The number of cyclists is on the steady growing for leisure, sports and transportation with the increasing interest in health and environment. However, the number of cycling accidents is also increasing steadily due to the lack of safety awareness and regulations. Focusing on these issues, we propose and develop the smart LED cycling helmet in order to reduce a risk of cycling accident. To provide the motion information of the bicycle for others, we attach the LEDs on the helmet and control the LED lights using Arduino. The motion information is displayed on the LED helmet by using sensors of the smartphone. Communication between Arduino and the smartphone is performed through Bluetooth.

  • PDF

IoT Enabled Smart Emergency LED Exit Sign controller Design using Arduino

  • Jung, Joonseok;Kwon, Jongman;Mfitumukiza, Joseph;Jung, Soonho;Lee, Minwoo;Cha, Jaesang
    • International journal of advanced smart convergence
    • /
    • v.6 no.1
    • /
    • pp.76-81
    • /
    • 2017
  • This paper presents a low cost and flexible IoT enabled smart LED controller using Arduino that is used for emergency exit signs. The Internet of Things (IoT) is become a global network that put together physical objects using network communications for the purpose of inter-communication of devices, access information on internet, interaction with users as well as permanent connected environment. A crucial point in this paper, is underlined on the potential key points of applying the Arduino platform as low cost, easy to use microcontroller with combination of various sensors applied in IoT technology to facilitate and establishment of intelligent products. To demonstrate the feasibility and effectiveness of the system, devices such as LED strip, combination of various sensors, Arduino, power plug and ZigBee module have been integrated to setup smart emergency exit sign system. The general concept of the proposed system design discussed in this paper is all about the combination of various sensor such as smoke detector sensor, humidity, temperature sensor, glass break sensors as well as camera sensor that are connected to the main controller (Arduino) for the purpose of communicating with LED exit signs displayer and dedicated PC monitors from integrated system monitoring (controller room) through gateway devices using Zig bee module. A critical appraisal of the approach in the area concludes the paper.

LED color control using Arduino and Human motion sensors (아두이노와 인체감지 센서를 이용한 LED 컬러 제어)

  • Kim, Sang Ki;Cha, Jaesang
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.69-73
    • /
    • 2014
  • Recent interest in the worldwide energy to increase, and energy savings of the energy for effective operation of the IT technology there is a demand. By using a low-power LED energy efficient energy use worldwide for a variety of studies have been conducted. In Korea, 20-30% of the domestic electricity consumption corresponding to the illumination in order to conserve energy used by various sensors associated with illumination control studies are underway. That is the next generation of energy began to pay attention to the LED light source, LED and Arduino In this paper, an ultrasonic sensor to control and want to maximize the energy efficiency of the management. Paper, the user is directly operating the separate controller that controls the LED light, instead of being recognized through human body detection LED light on / off to control the experiment and study verified. In this paper, we develop an interface that also allows them to maximize the efficiency of energy management and efficiency, accompanied by expansion of commercialization can be achieved.

Study on the Development of LED streetlight control system using GPS satellite communication and Arduino (GPS 위성통신과 아두이노를 이용한 에너지 절약형 LED 가로등 제어 시스템 개발에 관한 연구)

  • Lee, Wan-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.632-637
    • /
    • 2016
  • A streetlight control system was developed using information technology and LED lights for efficient management and energy savings. The proposed system can control the power usage of an LED streetlight luminaire using GPS satellite communication and an Arduino with a built-in microprocessor. A control circuit was designed to control the current using GPS, a control unit, transistor, resistor, and constant-current supply circuit. The circuit was validated through experiments with normal operation. Using GPS, the control system extracts accurate time and location information according to the season, and it controls the current supplied to the LED streetlight according to the extracted time. Power consumption was reduced by more than 11%. The control system could reduce accidents caused by conventional lighting systems used to save energy, and it could improve the inefficient management of energy by preserving constant brightness of a streetlight at times and in areas that have less traffic.

A study on lighting system for LED color temperature control using wireless communication and smartphone (무선 통신과 스마트폰을 이용한 LED 색온도 제어 조명 시스템에 관한 연구)

  • Hong, Young-Jin;Lim, Soon-Ja;Lee, Wan-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.72-77
    • /
    • 2017
  • Lighting systems in modern society has been developed using a combination of IT technology and LED lighting for the purpose of bringing about changes in human-centered natural lighting and to take advantage of the efficient management and energy saving of LED lighting. In this paper, we propose an LED lighting control system that can control the color temperature and brightness of LED lighting composed of 3000K Warm LEDs and 6000K Cool LEDs by using an Arduino Due and wireless communication technology such as Bluetooth and Zigbee. The Arduino Due allows the color temperature of the lighting to be adjusted in several steps by controlling the duty rate and enables many lights to be controlled using Zigbee communication capable of 1: N multiple communication. By using Bluetooth communication, it is possible to easily control the LED lighting by means of a smartphone application, thereby enhancing the convenience for the user. The wireless communication based LED lighting control system implemented in this study cannot only provide human-centered lighting through its color temperature control from 3067K to 5960K and illumination control, but can also reduce the power consumption and be used as a natural-friendly lighting system.

Design and Implementation of Smart LED Bicycle Helmet using Arduino (아두이노를 이용한 스마트 LED 자전거 헬멧의 설계 및 구현)

  • Ahn, Sung-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1148-1153
    • /
    • 2016
  • The number of cyclists is on the steady growing for leisure and transportation with the increasing interest in health and environment. However, the number of cycling accidents is also increasing steadily due to the lack of safety awareness and regulations. Focusing on this issue, we propose and develop a smart LED bicycle helmet in order to reduce a risk of cycling accident. The main idea is to change status of the LED on the helmet based on the bicycle's movement and provide motion information of the bicycle for others. To control the LED lights on the helmet, we use the Arduino board which communicates with the LED module through serial connection. We decide motion information by using the values from acceleration and GPS sensors of the smartphone. To receive this information from the smartphone, the control board and the smartphone are connected by Bluetooth.

An Interactive Physical Computing Based LED CUBE with Infrared Ray Distance Sensor

  • Kim, Soomin;Park, Chun-Su
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.751-755
    • /
    • 2019
  • This paper introduces a LED CUBE tool interacting with a distance sensor to solve real life problems in the physical computing field. Students can experience interactive education and intuitively understand the cubic operations with 3-dimensional animations obtained from a $3{\times}3{\times}3$ LED CUBE and a distance sensor connecting to Arduino. If the proposed LED CUBE is applied in physical computing section of the Information curriculum of middle school, students are expected to improve their computational thinking ability to solve problems in real life and other areas creatively and efficiently.