• 제목/요약/키워드: Arctic tanker

검색결과 8건 처리시간 0.025초

Arctic Shuttle Tanker의 Winterization 적용사레 (Winterization for Arctic Shuttle Tanker)

  • 황창연
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.175-176
    • /
    • 2006
  • 러시아의 북극해(Northern Sea) 연안은 석유와 천연 가스등 자원이 대규모로 매장된 곳이어서 근래에는 해상을 통한 수송 방법이 적극적으로 추진되고 있다. 최근 쇄빙기능을 가진 컨테이너, 유조선이 발주되었으며 향후 쇄빙 LNG 운반선도 발주될 예정이다. 국내에서는 2005년 말 최초로 러시아 Sovcomflot 에서 발주한 쇄빙유조선 70K Arctic Shuttle Tanker 를 수주하였으며 Ambient air temperature $-40^{\circ}C$(Extreme low temperature $-40^{\circ}C$) 에 적용한 Winterization 에 대해 설명하고자 한다.

  • PDF

극지용 쇄빙 유조선 개발 (Development of an Arctic Tanker Design)

  • 김현수;하문근;안당;전호환
    • 대한조선학회논문집
    • /
    • 제40권6호
    • /
    • pp.20-29
    • /
    • 2003
  • When Arctic offshore development in the 1970's first led to the consideration of ice capable tankers, there was a high level of uncertainty over design requirements for both safety and ship performance. Also here was a lack of reliable methods to evaluate design proposals. Since that time, improved understanding of the ice environment has raised the confidence of design specifications. Parallel developments have resulted in a suite of engineering tools for ship performance evaluation at the design stage Recent development of offshore and near shore oil and gas reserves in several countries together with economic studies of increased transportation through the Russian Arctic has newly introduced the interest in ice capable tanker design. in response, Samsung Heavy Industries (SHI) applied its experience in tanker design and construction to the design of a specialized tanker with ice capability. SHI produced two prototype hull designs for further study. The performance of both hulls and of the propellers was evaluated at the Institute for Marine Dynamics (IMD) in St. John's, Newfoundland This paper discusses the development of the design, describes the model experiments to determine performance and variations, and presents the results.

쇄빙 유조선과 일반 유조선의 저항특성 비교연구 (Comparison Study on the Resistance Characteristics of an Arctic Tanker and a General Tanker)

  • 김현수;하문근;안당;전호환
    • 대한조선학회논문집
    • /
    • 제43권1호
    • /
    • pp.43-49
    • /
    • 2006
  • The hull form of icebreaking tanker depends on the trade route and ice characteristic. The hull form has to be designed for icebreaking concept if the vessel is operating in heavy ice and also the hull from has to be optimized for general tanker when the ship is operating in ice-free ocean. This paper presents comparison of ship resistance in pack ice, level ice and open water. Four ships are used to compare the resistance characteristic. One is conventional tanker and three ships are icebreaking tankers. The ice model test was carried out at the IOT (Institute for Ocean Technology, Newfoundland, Canada) and open water test was performed at 55MB (Samsung Ship Model Basin). The ice resistance of conventional tanker was predicted by Colbourne's method. The resistance of open water, pack ice and level ice are compared and discussed. The best hull form of icebreaker is not good in open water performance compare to conventional tanker. This result explains that the hull form of icebreaker and normal tanker have to compromise when the ship is operated in ice and ice-free condition. The result of this paper gives a guide for icebreaking tanker design.

Ultimate strength performance of Northern sea going non-ice class commercial ships

  • Park, Dae Kyeom;Paik, Jeom Kee;Kim, Bong Ju;Seo, Jung Kwan;Li, Chen Guang;Kim, Do Kyun
    • Structural Engineering and Mechanics
    • /
    • 제52권3호
    • /
    • pp.613-632
    • /
    • 2014
  • In the early design stage of ships, the two most important structural analyses are performed to identify the structural capacity and safety. The first step is called global strength analysis (longitudinal strength analysis or hull girder strength analysis) and the second step is local buckling analysis (stiffened panel strength analysis). This paper deals with the ultimate strength performance of Arctic Sea Route-going commercial ships considering the effect of low temperature. In this study, two types of structural analyses are performed in Arctic sea conditions. Three types of ship namely oil tanker, bulk carrier and container ship with four different sizes (in total 12 vessels) are tested in four low temperatures (-20, -40, -60 and $-800^{\circ}C$), which are based on the Arctic environment and room temperature ($20^{\circ}C$). The ultimate strength performance is analysed with ALPS/HULL progressive hull collapse analysis code for ship hulls, then ALPS/ULSAP supersize finite element method for stiffened panels. The obtained results are summarised in terms of temperature, vessel type, vessel size, loading type and other effects. The important insights and outcomes are documented.

Baltic Ice Class IA를 적용한 115K Ice Tanker 개발 (Development of 115K Tanker Design Adopted Ice Class 1A)

  • 김현수;하문근;백명철;김수형;박종우;전호환
    • 대한조선학회논문집
    • /
    • 제41권6호
    • /
    • pp.120-125
    • /
    • 2004
  • There are very few numbers of 115K FPP (Fixed Pitch Propulsion) Tankers for the Baltic ice class IA because the minimum power requirement of FMA (Finish- Swedish Maritime Association) needs quite large engine power and the 40 m Beam is out of calculation range of FMA minimum power requirements. The shipyard has no choice except to increase the engine power to satisfy FMA minimum power requirement Rule. And the operation cost, efficiency of hullform and its building cost are not good from the ship owners' point of view To solve this problem, the experience of ice breaking tanker development and the ice tank test results were adopted. The main idea to reduce the ice resistance is by reducing waterline angle at design load waterline. The reason behind the main idea is to reduce the ice-clearing force. Two hull forms were developed to satisfy Baltic Ice class IA. Two ice tank tests and one towing tank test was performed at MARC (Kvaener-Masa Arctic Research Center) and SSMB (Samsung Ship Model Basin) facilities, respectively. The purpose of these tests was to verify the performance in ice and open water respectively The hull form 2 shows less speed loss compared to Hull form 1 in open water operation but hull form 2 shows very good ice clearing ability. finally the Hull Form 2 satisfying Baltic ice class IA. The merit of this hull form is to use the same engine capacity and no major design changes in hull form and other related designs But the hull structure has to be changed according to the ice class grade. The difference in two hull form development methods, ice model test methods and analysis methods of ice model test will be described in this paper.

빙마찰계수에 따른 쇄빙탱커의 빙저항 변화 (Change of Ice Resistance of Ice-Breaking Tanker According to Frictional Coefficient)

  • 조성락;이승수;이용철;염종길;장진호
    • 대한조선학회논문집
    • /
    • 제58권3호
    • /
    • pp.175-181
    • /
    • 2021
  • This study describes the model tests in ice according to the frictional coefficient of an ice-breaking ship and the change in ice resistance by the analysis method for each component of ice resistances. The target vessel is a 90K DWT ice-breaking tanker capable of operating in ARC7 ice conditions in the Arctic Ocean, and twin POD propellers are fitted. The hull was specially painted with four different frictional coefficients on the same ship model. The total ice resistance can be separated by ice breaking, ice buoyancy, ice clearing resistances through the tests in level ice, pre-sawn ice and creep test in pre-sawn ice under sea ice thickness of 1.2 m and 1.7 m. Ice resistance was analyzed by correcting the thickness and bending strength of model ice by the ITTC correction method. As the frictional coefficient between the hull and ice increases, ice buoyancy and clearing resistances increase significantly. When the surface of the hull is rough, it is considered that the broken ice pieces do not slip easily to the side, resulting in an increase in ice buoyancy resistance. Also, the frictional coefficient was found to have a great influence on the ice clearing resistance as the ice thickness became thicker.

Experimental Results of Ship-To-Ship Lightering Operations Applied Velocity Information GPS

  • Yoo, Yun-Ja;Pedersen, Egil;Kouguchi, Nobuyoshi;Song, Chae-Uk
    • 한국항해항만학회지
    • /
    • 제38권6호
    • /
    • pp.577-583
    • /
    • 2014
  • A ship-to-ship (STS) lightering operation takes place in order to transfer cargo (e.g. crude oil or petroleum products) between an ocean-going ship and a service ship alongside it. Instrumental measurements to accurately determine the relative speeds and distances during the approach between the vessels would benefit the operational safety and efficiency. A velocity information GPS (VI-GPS) system, which uses the instantaneous velocity measures from carrier-phase Doppler measurement, has been applied in a field observation onboard a service ship (Aframax tanker) approaching a ship-to-be-lightered (VLCC) in open waters. This article proposes to apply VI-GPS as the input sensor to a guidance and decision-support system aiming to provide accurate velocity information to the officer in charge of an STS operation. A method for precise velocity measurement using VI-GPS was described and the measurement results were compared each other with the results of Voyage Data Recorder (VDR) and VI-GPS that showed the concept of a guidance and decision-support system applying VI-GPS with the field test results during STS operations. Also, it turned out that VI-GPS has sufficient accuracy to serve as an input sensor from the field test results.