• Title/Summary/Keyword: Architectural engineering field

Search Result 640, Processing Time 0.023 seconds

Effects of Flush-out in the Reduction of Formaldehyde in Newly Built Residential Buildings (신축 공동주택에서 플러쉬아웃에 따른 폼알데하이드 농도 저감 효과에 관한 연구)

  • Park, Sang In;Kim, Joo Han;Park, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.3
    • /
    • pp.116-122
    • /
    • 2018
  • The purpose of this study was to confirm the effects of flush-out in the reduction of formaldehyde concentration in newly built residential buildings. The field measurements were conducted on two complexes of multi-residential buildings which are located in the suburban area of Seoul. About eight samples of residential buildings were selected to measure the changes in formaldehyde concentrations after flush-out from the two apartment complexes. The concentration of formaldehyde was measured using DNPH cartridge and HPLC. From the results of the field measurements, it was established that indoor formaldehyde concentration decreases 27.6~54.2% in the samples after flush-out. The number of days that the flush-out were conducted was noted to have no significant influence on the reduction rate of formaldehyde concentration when the flush-out continued more than 7 days. The comparison with Bake-out showed that flush-out also can reduce formaldehyde in newly built buildings as same levels of it.

A Consideration of Accuracy Correction Methods in RTLS for Indoor Facility Management with Drones

  • Yeo, ChangJae;yu, Jungho
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.210-213
    • /
    • 2017
  • The construction industry has witnessed an exponential growth of drones used in the field over the past few years. Likewise, the field of maintenance has paid increasing attention to using drones with a view to improving the efficiency of condition checks in high-rise buildings and major space. Although operators manipulate drones to inspect buildings at present, drones are expected to autonomously move around without operators in a few years. Also, for indoor maintenance, it is important for drones to find accurate locations, which is implemented by real-time locating systems(RTLS). Yet, the accuracy of RTLS varies across the types of systems and indoor settings, which warrants a locating system suitable for indoor space and a location correction system designed to improve the accuracy. Hence, the current study investigated the accuracy of real-time locating systems(RTLS) for the maintenance of indoor space of buildings with drones and delved into the methods of correcting the location information to improve the accuracy of RTLS.

  • PDF

Architectural Characteristics of the Neighborhood Mixed-use Buildings in the Housing Development District of Small Cities - Focused on Bugok Housing District in Gimcheon - (중소도시 택지개발지구내 근린형 복합용도건물의 건축적 특성에 관한 연구 - 김천시 부곡택지지구를 중심으로 -)

  • Lee, Keun-Taek
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.4
    • /
    • pp.177-187
    • /
    • 2008
  • This study does try to proceed on the assumption that complex buildings can vitalize urban life of modern society from contemporary complexity and cases of past failure, and intend to propose future planning guidelines and directions of the neighborhood mixed-use buildings in the housing development district of small cities. For this purpose, thirty buildings which had been built on Bugok housing district in Gimcheon from 1999 until 2007 were chosen and investigated in urban and architectural dimension. The scope of this investigation is that site size is below 400 square meter and the number of stories on the ground below 5 floor, and the method of that is through field investigation, field photographs, and recordings and drawings on those. Investigative contents could be divided and analysized into physical and functional elements in urban and architectural dimension. On the basis of these results, the future planning approach of complex buildings in medium and small cities will be considered as planning principles.

  • PDF

The motion rule of sand particles under control of the sand transportation engineering

  • Xin, Lin-gui;Cheng, Jian-jun;Chen, Bo-yu;Wang, Rui
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.213-221
    • /
    • 2018
  • In the desert and Gobi regions with strong wind and large sediment discharge, sand transporting engineering is more effective than sand blocking and sand fixing measures in sand prevention. This study uses the discrete phase model of 3D numerical simulation to study the motion trail, motion state and distribution rule of sand particles with different grain diameters when the included angle between the main shaft of the feather-row lateral transportation sand barrier and the wind direction changes, and conducts a comparison in combination with the wind tunnel test and the flow field rule of common sand barrier. According to the comparison, when wind-sand incoming flow passes through a feather-row sand barrier, sand particles slow down and deposit within the deceleration area under the resistance of the feather-row sand barrier, move along the transportation area formed by the transportation force, and accumulate as a ridge at the tail of the engineering. With increasing wind speed, the eolian erosion of the sand particles to the ground and the feather-row sand barrier is enhanced, and the sand transporting quantity and throw-over quantity of the feather-row sand barrier are both increased. When sand particles with different grain diameters bypass the feather-row sand barrier, the particle size of the infiltrating sands will increase with the included angle between the main shaft of the feather-row sand barrier and the wind direction. The obtained result demonstrates that, at a constant wind speed, the flow field formed is most suitable for the lateral transportation of the wind-drift flow when the included angle between the main shaft of the feather-row sand barrier lateral transportation engineering and the wind speed is less than or equal to $30^{\circ}$.

The research about RTPM system construction that apply use case modeling methodology

  • Eun Young-Ahn;Kyung Hwan-Kim;Jae Jun-Kim
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.464-471
    • /
    • 2009
  • Robot and application of IT skill of construction industry are slow comparatively than another thing industry by the feature. This research proposes progress management and real time information gathering through construction automation and RFID focused on steel structure construction. Building for RTPM system, must consider various variables and surrounding situation in construction field and it is the most important and difficult matter that draw right requirement and grasp relation between this requirements to accomplish one suitable task considering these environment. Therefore, in this study analyzes requirement and target for RTPM system based on scenario that is easy to draw requirement and apply this to use case model. Presented method suggests that represent relation between goals and way that refines goal systematically from requirement of RTPM system. And it could express for visualization through the Way that attaches nonfunctional elements of system with system internal goal.

  • PDF

Comparison of Impact Sound Insulation Performances of Apartment Floors Against Heavy-weight Impact Sources via Field Measurement Data (공동주택 현장 측정자료를 활용한 중량충격원의 바닥충격음 차단성능 비교)

  • Yun, Chang-Yeon;Yeon, Jun-Oh;Kim, Myung-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.651-658
    • /
    • 2014
  • Notification 2013-611 of MOLIT has come into effect. It relates primarily to new standard impact source. In this study, an in-depth experimental analysis of the difference between a bang machine and an impact ball was performed via field testing of shear wall and flat plate structure at 51 sites. This paper focuses on the difference in single number quantities between a bang machine and an impact ball. At wall thicknesses of 180 and 210 mm in shear wall structure, the single number quantities exhibited differences of 3.1 and 4.5 dB, respectively, and at thicknesses exceeding 250 mm in flat plate structure, the difference was constant at 4.6 dB. With regard to flat plate structures, the single-index difference increased up to 11 dB as the thickness of the floor slab increased. In general, the highest level of contribution for the bang machine was 63 Hz, irrespective of thickness determining bandwidth. The highest level for the impact ball were 63 Hz and 125 Hz. In future research, when reviewing additional field performance measurement data, it will be necessary to consider a detailed examination instead of the current method of uniformly adding 3 dB for all thicknesses and types of structures.

A Study on the Safety Plan for Usage of the Construction Field Work Plate (건설현장 작업발판의 안전 사용방안에 관한 연구)

  • Go, Seong-Seok;Yeo, Sang-Ku;Choi, Don-Hoeng
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.34-42
    • /
    • 2011
  • Death disaster among the disasters in construction field is mainly occurred by crash, and the work plate is the main objects causing crash. This study was performed by interview with workers in construction field to evaluate the consciousness on safety and to analyze the type of use and the state. Finally the problems while using work plate were appeared with its requirements for the improved use. Based on the results from this study, amendments were proposed for some parts of regulation related, and further four types of development on the safe work plate were presented. It is expected that the safer construction environment could be composed by using the results.

Determination and evaluation of dynamic properties for structures using UAV-based video and computer vision system

  • Rithy Prak;Ji Ho Park;Sanggi Jeong;Arum Jang;Min Jae Park;Thomas H.-K. Kang;Young K. Ju
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.457-468
    • /
    • 2023
  • Buildings, bridges, and dams are examples of civil infrastructure that play an important role in public life. These structures are prone to structural variations over time as a result of external forces that might disrupt the operation of the structures, cause structural integrity issues, and raise safety concerns for the occupants. Therefore, monitoring the state of a structure, also known as structural health monitoring (SHM), is essential. Owing to the emergence of the fourth industrial revolution, next-generation sensors, such as wireless sensors, UAVs, and video cameras, have recently been utilized to improve the quality and efficiency of building forensics. This study presents a method that uses a target-based system to estimate the dynamic displacement and its corresponding dynamic properties of structures using UAV-based video. A laboratory experiment was performed to verify the tracking technique using a shaking table to excite an SDOF specimen and comparing the results between a laser distance sensor, accelerometer, and fixed camera. Then a field test was conducted to validate the proposed framework. One target marker is placed on the specimen, and another marker is attached to the ground, which serves as a stationary reference to account for the undesired UAV movement. The results from the UAV and stationary camera displayed a root mean square (RMS) error of 2.02% for the displacement, and after post-processing the displacement data using an OMA method, the identified natural frequency and damping ratio showed significant accuracy and similarities. The findings illustrate the capabilities and reliabilities of the methodology using UAV to evaluate the dynamic properties of structures.

Markerless camera pose estimation framework utilizing construction material with standardized specification

  • Harim Kim;Heejae Ahn;Sebeen Yoon;Taehoon Kim;Thomas H.-K. Kang;Young K. Ju;Minju Kim;Hunhee Cho
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.535-544
    • /
    • 2024
  • In the rapidly advancing landscape of computer vision (CV) technology, there is a burgeoning interest in its integration with the construction industry. Camera calibration is the process of deriving intrinsic and extrinsic parameters that affect when the coordinates of the 3D real world are projected onto the 2D plane, where the intrinsic parameters are internal factors of the camera, and extrinsic parameters are external factors such as the position and rotation of the camera. Camera pose estimation or extrinsic calibration, which estimates extrinsic parameters, is essential information for CV application at construction since it can be used for indoor navigation of construction robots and field monitoring by restoring depth information. Traditionally, camera pose estimation methods for cameras relied on target objects such as markers or patterns. However, these methods, which are marker- or pattern-based, are often time-consuming due to the requirement of installing a target object for estimation. As a solution to this challenge, this study introduces a novel framework that facilitates camera pose estimation using standardized materials found commonly in construction sites, such as concrete forms. The proposed framework obtains 3D real-world coordinates by referring to construction materials with certain specifications, extracts the 2D coordinates of the corresponding image plane through keypoint detection, and derives the camera's coordinate through the perspective-n-point (PnP) method which derives the extrinsic parameters by matching 3D and 2D coordinate pairs. This framework presents a substantial advancement as it streamlines the extrinsic calibration process, thereby potentially enhancing the efficiency of CV technology application and data collection at construction sites. This approach holds promise for expediting and optimizing various construction-related tasks by automating and simplifying the calibration procedure.

Vibration and Buckling of Thick Plates using Isogeometric Approach

  • Lee, Sang Jin;Kim, Ha Ryong
    • Architectural research
    • /
    • v.15 no.1
    • /
    • pp.35-42
    • /
    • 2013
  • A study on the free vibration and linear buckling analyses of thick plates is described in this article. In order to determine the natural frequencies and buckling loads of plates, a plate element is developed by using isogeometric approach. The Non-uniform B-spline surface (NURBS) is used to represent both plate geometry and the unknown displacement field of plate. All terms required in isogeometric formulation are consistently derived by NURBS definition. The capability of the present plate element is demonstrated by using several numerical examples. From numerical results, it is found to be that the present isogeometric element can predict accurate natural frequencies and buckling loads of plates.