• 제목/요약/키워드: Architectural code

검색결과 341건 처리시간 0.028초

특수 및 준특수 상세에 따른 철근콘크리트 전단벽의 비선형 내진거동 해석 (Analysis of Nonlinear Seismic Behavior of Reinforced Concrete Shear Wall Systems Designed with Special and Semi-Special Seismic Details)

  • 윤성준;이기학;천영수;김태완
    • 한국지진공학회논문집
    • /
    • 제17권1호
    • /
    • pp.43-51
    • /
    • 2013
  • In this paper, analytical models for reinforced concrete shear wall systems designed based on Korean Building Code (KBC2009) are proposed, which have special and semi-special seismic details and are compared with experimental results for a verification of analytical models. In addition, semi-special seismic details aimed to improve constructability and enhance economic efficiency were proposed and evaluated. The analytical models were performed based on nonlinear static and dynamic analysis. Through the nonlinear analyses, two seismic details showed the similar seismic behavior from the cyclic test and the analytical models for the two different seismic details represented the behavior in terms of the initial stiffness, maximum strength and strength degradation. And newly proposed seismic details(semi-special) provided with similar hysterestic behavior as well as the maximum drift.

특수 및 준특수 상세에 따른 철근콘크리트 전단벽의 내진성능평가 (Seismic Performance Evaluation of Reinforced Concrete Shear Wall Systems Designed with Special and Semi-Special Seismic Details)

  • 오해철;이기학;천영수;김태완
    • 한국지진공학회논문집
    • /
    • 제18권4호
    • /
    • pp.181-191
    • /
    • 2014
  • This research presents the nonlinear analysis model for reinforced concrete shear wall systems with special boundary elements as proposed by the Korean Building Code (KBC, 2009). In order to verify the analysis model, analytical results were compared with the experimental results obtained from previous studies. Established analytical model was used to perform nonlinear static and dynamic analyses. Analytical results showed that the semi-special shear wall improved significantly the performance in terms of ductility and energy dissipation as expected based on previous test results. Furthermore, nonlinear incremental dynamic analysis was performed using 20 ground motions. Based on computer analytical results, the ordinary shear wall, special shear wall and newly proposed semi-special shear wall systems were evaluated based on the methods in FEMA P965. The results based on the probabilistic approaches accounting for inherent uncertainties showed that the semi-special shear wall systems provide a high capacity/demand (ACMR) ratio owing to their details, which provide enough capacity to sustain large inelastic deformations.

경주지진 관측자료에 기반한 유효최대지반가속도 분석 (Investigation on Effective Peak Ground Accelerations Based on the Gyeongju Earthquake Records)

  • 신동현;홍석재;김형준
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.425-434
    • /
    • 2016
  • This study investigates important parameters used to determine an effective peak ground acceleration (EPGA) based on the characteristics of response spectra of historical earthquakes occurred at Korean peninsula. EPGAs are very important since they are implemented in the Korean Building Code for the seismic design of new structures. Recently, the Gyeongju earthquakes with the largest magnitude in earthquakes measured at Korea took place and resulted in non-structural and structural damage, which their EPGAs should need to be evaluated. This paper first describes the basic concepts on EPGAs and the EPGAs of the Gyeongju earthquakes are then evaluated and compared according to epicentral distances, site classes and directions of seismic waves. The EPGAs are dependant on normalizing factors and ranges of period on response spectrum constructed with the Gyeongju earthquake records. Using the normalizing factors and the ranges of period determined based on the characteristics of domestic response spectra, this paper draw a conclusion that the EPGAs are estimated to be about 30 % of the measured peak ground accelerations (PGA).

올린 도서관 현상설계에서 나타난 근대건축의 공간적 특성에 관한 연구 - 장소적 질서와 형태적 상징을 중심으로 - (A Study on the Spatial Characteristics of Modern Architecture found from the Olin Library Competition - Focused on the Local Order and Morphological symbols -)

  • 임종엽;김윤겸
    • 교육시설 논문지
    • /
    • 제22권4호
    • /
    • pp.15-25
    • /
    • 2015
  • The Olin Library in St. Louis was an important design competition for the United States in the 1950's, the rear of America's modern architecture. The participants of this competition were a variety of representative architects and groups of its time. With the library's functional rationality, the Olin Library competition was legible of the aspects of modern architectural flow. The competition required two demands. The first demand was absolute importance in character definition of place, which was to satisfy the site conditions approached from campus design. Secondly was related to interpretation of morphological symbolism in an architectural matter. The experiments of American modern architecture started to change its ideal goal gradually ; accommodating the altering public's code, at the same time, maintaining the original modern value was the reason to changing the ideal goal. As a turning point, the Olin Library should be understood as an important work, which divulged the value change of architectural interpretation.

Effects of Stressed and Unstressed Reinforcements on Prestressed Concrete Members with Unbonded Tendons

  • Moon, Jeong-Ho;Shin, Kyung-Jae;Lim, Jae-Hyung;Lee, Sun-Hwa
    • KCI Concrete Journal
    • /
    • 제12권1호
    • /
    • pp.131-138
    • /
    • 2000
  • The research purpose of this paper is to investigate the influential Parameters on the unbonded tendon stress. The parameters were the reinforcing ratio, the prestressing ratio, and the loading type. To this end. first, the influence of parameters were examined with twenty eight test results obtained from references. Then, an experimental study was carried out with nine specimens. Test variables were the reinforcing ratio and the prestressing ratio. Specimens were divided equally into three groups and each group had a different level of the reinforcing ratio. Each specimen within a group has a different level of the prestressing ratio. The investigation with previous and current tests revealed the followings; (1) the length of crack distribution zone does not have a close relation with the length of plastic hinge. (2) the prestressing ratio does not affect both the length of crack distribution and the length of plastic hinge, (3) the tendon stress variation is in reverse relation with the ratios of mild steels and tendons, (4) the loading type nay not affect significantly the length of crack distribution zone, (5) AASHTO LRFD Code equation and Moon/Lim's design equation predicted the test results well with some safety margins.

  • PDF

대학 기숙사 건물의 안전성 및 사용성 평가 연구 (A Study on the Safety and Usability of University Dormitory Buildings)

  • 채경훈;허석재;허무원
    • 교육시설 논문지
    • /
    • 제26권2호
    • /
    • pp.3-10
    • /
    • 2019
  • This study evaluated the vibration use and safety of students living in the dormitories on the 12th and 14th floors by feeling uncomfortable. The measurement method was to measure the acceleration due to free vibration and single - person walking. The slab stiffness was then calculated, and the usability and safety were compared according to international standards. The natural frequency of the slab was 6.8 Hz. The natural frequency of a typical slab is around 15Hz. Therefore, the evaluation slab is judged as a flexible floor structure. It is considered that there is a high possibility of resonance in the middle of daily life because of low natural frequency and near harmonic component of walking vibration. As a result, the RMS acceleration level is within the tolerance range defined by ISO 10137 code, but the 13th floor exceeds the reference limit, so that a sensitive person could detect the vibration somewhat in the lying position.

Investigation on Ultimate Strength of STS304L Stainless Steel Welded Connection with Base Metal Fracture Using Finite Element Analysis

  • Lee, HooChang;Kim, TaeSoo;Hwang, BoKyung;Cho, TaeJun
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1139-1152
    • /
    • 2018
  • Many studies on the application of stainless steels as structural materials in buildings and infra-structures have been performed thanks to superior characteristics of corrosion resistance, fire resistance and aesthetic appeal. Experimental investigation to estimate the ultimate strength and fracture mode of the fillet-welded connections of cold-formed austenitic stainless steel (STS304L) with better intergranular corrosion resistance than that of austenitic stainless steel, STS304 commonly used has carried out by authors. Specimens were fabricated to fail by base metal fracture not weld metal fracture with main variables of weld lengths according to loading direction. All specimens showed a block shear fracture mode. In this paper, finite element analysis model was developed to predict the ultimate behaviors of welded connection and its validity was verified through the comparison with test results. Since the block shear behavior of welded connection due to stress triaxiality and shear-lag effects is different from that of bolted connection, stress and strain distributions in the critical path of tensile and shear fracture section were investigated. Test and analysis strengths were compared with those by current design specifications such as AISC, EC3 and existing researcher's proposed equations. In addition, through parametric analysis with extended variables, the conditions of end distance and longitudinal weld length for block shear fracture and tensile fracture were suggested.

바텀애시 및 준설토 기반 인공경량골재 콘크리트의 압축강도 발현 모델 제시 (Proposal for Compressive Strength Development Model of Lightweight Aggregate Concrete Using Expanded Bottom Ash and Dredged Soil Granules)

  • 이경호;양근혁
    • 대한건축학회논문집:구조계
    • /
    • 제34권7호
    • /
    • pp.19-26
    • /
    • 2018
  • This study tested 25 lightweight aggregate concrete (LWAC) mixtures using the expanded bottom ash and dredged soil granules to examine the compressive strength gain of such concrete with different ages. The test parameters investigated were water-to-cement ratios and the natural sand content for the replacement of lightweight fine aggregate. The compressive strength gain rate in the basic equation specified in fib model code was experimentally determined in each mixture and then empirically formulated as a function of the water-to-cement ratio and oven-dried density of concrete. When compared with 28-day compressive strength, the tested LWAC mixtures exhibited relatively low gain ratios (0.49~0.82) at an age of 3 days whereas the gain ratios (1.16~1.41) at 91 days were higher than that (1.05~1.15) of the conventional normal-weight concrete. Thus, the fib model equations tend to overestimate the early strength gain of LWAC but underestimate the long-term strength gain. The proposed equations are in good agreement with the measured compressive strength development of LWAC at different ages, indicating that the mean and standard deviation of the normalized root mean square errors determined in each mixture are 0.101 and 0.053, respectively.

강연선으로 보강된 초고성능 콘크리트 인장부재의 인장강화 및 균열거동 평가 (Evaluation on Tension Stiffening and Cracking Behavior of Ultra-High Performance Concrete Members with Strands)

  • 박민국;한선진;김강수
    • 대한건축학회논문집:구조계
    • /
    • 제35권5호
    • /
    • pp.125-132
    • /
    • 2019
  • Ultra-high performance concrete (UHPC) has high compressive and tensile strengths due to the particle packing, and its ductile behavior can be ensured by utilizing steel fibers. However, since the UHPC members exhibit different characteristics of crack behavior and tensile behavior from normal concrete, the tension stiffening and cracking characteristics of the UHPC should be accurately modeled for the design and analysis of the UHPC members. In this study, uniaxial tension tests was conducted on the UHPC members with strands, where the test variables were diameter and reinforcing ratio of strands. Detailed analyses were also conducted to identify the tensile characteristics and crack behavior of the UHPC members. By comparing the test results with current code provisions and other models proposed by existing researchers, their applicability for estimation of crack behavior of the UHPC members was examined.

무정전전원장치(UPS)의 진동대 실험 및 동적특성 분석 (Investigation of Dynamic Characteristcs Uninterruptible Power Supply System (UPS) Using Shaking Table Tests)

  • 이승재;김주영;최경규
    • 대한건축학회논문집:구조계
    • /
    • 제35권11호
    • /
    • pp.129-136
    • /
    • 2019
  • Non-structural elements are vulnerable to earthquake ground motion. In this study, an experimental study for the electrical non-structural element was performed using tri-axial shaking table tests. A 100kVA UPS(Uninterruptible Power Supply system) was used as the test specimen. The test specimen was anchored to the concrete slab using the conventional installation detail. The input acceleration were generated in accordance with ICC-ES AC156 code. Scale factors of the input acceleration with respect to the required response spectrum defined in ICC-ES AC156 were from 25% to 600%. Based on the test results, damage and dynamic characteristics of UPS were evaluated and analyzed including natural frequency, damping ratio, acceleration time history response, dynamic amplification factor and relative displacement.