• Title/Summary/Keyword: Architectural Walls

Search Result 399, Processing Time 0.027 seconds

Seismic Performance of T-Shaped PC Walls with Wet Cast Joint (현장타설 습식접합부가 있는 T형 PC 벽체의 내진성능)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.255-266
    • /
    • 2014
  • This paper investigates the seismic performance of T-shaped PC walls with a new vertical connections and wet cast joint. The load-displacement relationship, strength, ductility, failure mechanism, and deformation capacity of the T-shaped PC walls subjected to cyclic loading are verified. Test parameter is diagonal reinforcement of both flange and web wall panels to transfer shear strength. The longitudinal reinforcing steel bars placed edges of walls yield first and the ultimate deformation is terminated due to premature failure of connections. And diagonal reinforcements for shear transfer in walls are effective to restrain the wall crack. The strength and displacement obtained by the cross section analysis were very similar to the experimental data.

A Study on the Periodic Characteristics and Transition of the Rear Windows and Doors of Main Halls in Korean Buddhist Temples (불전배면(佛殿背面) 창호형식(窓戶形式)의 시대별(時代別) 특성(特性) 및 변천(變遷)에 관한 연구(硏究))

  • Kwak, Dong-Yeob;Kim, Il-Jin
    • Journal of architectural history
    • /
    • v.6 no.2 s.12
    • /
    • pp.9-22
    • /
    • 1997
  • The results of analyzing opening types in the rear elevations of ninety-six buddhist temples which would be existence can be summarized as follows ; 1) Opening types in the rear elevations of buddhist temples in the Koryo Dynasty were various as the type of doors and windows, and the type of combining with walls. but the fact had something in common that whole door was the swinging pannel one, and the type of the whole window was the lattice and the mullioned casement one. 2) The type of the lattice windows were disappered and the only type of the mullioned casement windows were put in an apperance in the early period of Cho-sun Dynasty. 3) The type of doors + walls and the type of doors + windows in the rear elevations of buddhist temples of the seventeenth century were absolute. Especially the mullioned casement windows were used mainly in buddhist temple of the type of doors + windows. 4) The type of doors + windows in the rear elevations of buddhist temples of the eighteenth century did not be seen, but types of doors + walls and walls + walls which were much enclosed, were mainly put to use in those.

  • PDF

Investigation of Structural Damage in Bearing Wall Buildings with Pilotis by 2017 Pohang Earthquake (2017 포항지진에 의한 필로티형 내력벽건물의 구조손상 분석)

  • Eom, Tae Sung;Lee, Seung Jae;Park, Hong Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • In 2017 Pohang Earthquake, a number of residential buildings with pilotis at their first level were severely damaged. In this study, the results of an analytical investigation on the seismic performance and structural damage of two bearing wall buildings with pilotis are presented. The vibration mode and lateral force-resisting mechanism of the buildings with vertical and plan irregularity were investigated through elastic analysis. Then, based on the investigations, methods of nonlinear modeling for walls and columns at the piloti level were proposed. By performing nonlinear static and dynamic analyses, structural damages of the walls and columns at the piloti level under 2017 Pohang Earthquake were predicted. The results show that the area and arrangement of walls in the piloti level significantly affected the seismic safety of the buildings. Initially, the lateral resistance of the piloti story was dominated mainly by the walls resisting in-plane shear. After shear cracking and yielding of the walls, the columns showing double-curvature flexural behavior contributed significantly to the residual strength and ductility.

Seismic Design Force for Rectangular Water Tank with Flexible Walls (유연한 벽면을 가진 사각형 물탱크의 설계지진력 산정)

  • Kim, Min Woo;Yu, Eunjong;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.303-310
    • /
    • 2023
  • The equivalent static load for non-structural elements has a limitation in that the sloshing effect and the interaction between the fluid and the water tank cannot be considered. In this study, the equations to evaluate the impulse and convective components in the design codes and previous research were compared with the shaking table test results of a rectangular water tank with flexible wall panels. The conclusions of this study can be summarized as follows: (1) It was observed that the natural periods of the impulsive component according to ACI 350.3 were longer than system identification results. Thus, ACI 350.3 may underestimate the earthquake load in the case of water tanks with flexible walls. (2) In the case of water tanks with flexible walls, the side walls deform due to bending of the front and back walls. When such three-dimensional fluid-structure interaction was included, the natural period of the impulsive component became similar to the experimental results. (3) When a detailed finite element (FE) model of the water tank was unavailable, the assumption Sai = SDS could be used, resulting in a reasonably conservative design earthquake load.

Seismic Behavior of Domestic Piloti-type Buildings Damaged by 2017 Pohang Earthquake (2017년 포항지진으로 피해를 입은 국내 필로티형 건물의 지진 거동)

  • Kim, Taewan;Chu, Yurim;Kim, Seung Re;Bhandari, Diwas
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.161-168
    • /
    • 2018
  • Pohang earthquake occurred on November 15, 2017, with a magnitude of 5.4. The damage of the structure caused by the Pohang earthquake was the most significant in 4-story piloti-type buildings, where the damage patterns were different according to the location of columns and walls at the first story. One building with a staircase at a corner shows shear failure at columns, and Another building with a staircase in the middle shows no failure or shear failure at staircase walls. Therefore, two different piloti-type buildings were selected; one has a staircase at a corner and another has in the middle, and the seismic behavior of the buildings were examined by nonlinear dynamic analysis applying a ground motion measured at Pohang. Analytical model well simulated the actual behavior of the piloti-type buildings during the earthquake. Analysis results showed that walls have an insufficient shear strength wherever the location of the staircase is and columns with insufficient transverse reinforcement could be failed when the staircase is located at a corner. Conclusively, structural engineers should design columns and walls in piloti-type buildings to possess sufficient capacity according to the location of staircase.

Damage Cause Analysis of Phaya-Thon-Zu Temple in Myanmar Using Thrust Line Analysis (추력선 해석을 이용한 미얀마 파야톤주 사원의 손상 원인 분석)

  • Hong, Souk-Il;Jeon, Geon-Woo;Jung, In-Ki;Han, Wuk-Bean;Kim, Ho-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.95-104
    • /
    • 2020
  • Phaya-Thon-Zu temple has a unique architectural style connected by the three temples, and cultural values are highly as murals remain on some of the walls. However, various damages in internal walls and vaults have occurred due to earthquake and environmental influences. In order to analyze these damages, accurate structural analysis is required, but structural modeling is difficult, because Phaya-Thon-Zu temple is the complex masonry structure which is stacked with small bricks. Therefore, this study intends to analyze the causes of damages by examining collapse mechanism for cross section and longitudinal section of vaults in the entrance hall and shrine by using thrust line analysis, which is a geometric method, and to compare it with the actual damage situation.

The Bearing Strength of Connections Between Steel Coupling Beam and Reinforced Concrete Shear Walls

  • Yun, Hyun Do;Park, Wan Shin;Han, Min Ki;Kim, Sun Woo;Kim, Yong Chul;Hwang, Sun Kyung
    • Architectural research
    • /
    • v.7 no.1
    • /
    • pp.27-38
    • /
    • 2005
  • No specific guidelines are available for computing the bearing strength of connection between steel coupling beam and reinforced concrete shear wall in a hybrid wall system. There were carried out analytical and experimental studies on connection between steel coupling beam and concrete shear wall in a hybrid wall system. The bearing stress at failure in the concrete below the embedded steel coupling beam section is related to the concrete compressive strength and the ratio of the width of the embedded steel coupling beam section to the thickness of the shear walls. Experiments were carried out to determine the factors influencing the bearing strength of the connection between steel coupling beam and reinforced concrete shear wall. The test variables included the reinforcement details that confer a ductile behavior in connection between steel coupling beam and shear wall, i.e., the auxiliary stud bolts attached to the steel beam flanges and the transverse ties at the top and the bottom steel beam flanges. In addition, additional test were conducted to verify the strength equations of the connection between steel coupling beam and reinforced concrete shear wall. The proposed equations in this study were in good agreement with both our test results and other test data from the literature.

A study on the name of the walls in YeonggeonUigwe Based on the gap wall of the Main Hall and Yeongnyeongjeon Hall of Jongmyo Shrine in the Joseon Dynasty (영건의궤로 살펴본 벽(壁)의 명칭에 관한 고찰 - 종묘 정전·영녕전의 갑벽(甲壁)을 중심으로 -)

  • HONG, Eunki;KWAK, Leera;HAN, Wook
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.4
    • /
    • pp.4-21
    • /
    • 2021
  • The purpose of this study is to examine the names and types of walls constructed in the late Joseon Dynasty in YeonggeonUigwe, a record of construction works of the Joseon Dynasty, and to examine the current status and name of walls constructed in the main hall and the Yeongnyeongjeon Hall of Jongmyo Shrine. The results of the study are as follows. First, the name of the wall can be divided into four types depending on the characteristics, including direction, location, shape, function, material, and complexity, and was used as a compound word in front of the wall. Second, some of the wall types related to the material were found to have differences in the timing of theypes of walls. Since the 18th century, the use of earthen walls has been reduced, and the use of wooden walls and paper walls are often used. Third, the walls of the Jongmyo Shrine were composed of a mud wall and a fireproof wall. A fireproof wall was installed in the main hall, including a pillar, while the Yeongnyeongjeon Hall was installed only between the pillar and the pillar. Fourth, the Gap Wall can be defined as the "wall constructed at the upper part of the chamber used in the construction of the building in Jongmyo." This study is meaningful in that it attempted to clarify the definition of a wall in the late Joseon Dynasty by examining the names and examples of walls used in the late Joseon Dynasty, focusing on walls that lacked research in familiarity.

Nonlinear Analytical Model of Unreinforced Masonry Wall using Fiber and Shear Spring Elements (파이버 및 전단 스프링요소를 이용한 비보강 조적벽체의 비선형 해석모델)

  • Hong, Jeong-Mo;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.283-291
    • /
    • 2018
  • This study intends to develop an analytical model of unreinforced masonry(URM) walls for the nonlinear static analysis which has been generally used to evaluate the seismic performance of a building employing URM walls as seismic force-resisting members. The developed model consists of fiber elements used to capture the flexural behavior of an URM wall and a shear spring element implemented to predict its shear response. This paper first explains the configuration of the proposed model and describes how to determine the modeling parameters of fiber and shear spring elements based on the stress-strain curves obtained from existing experimental results of masonry prisms. The proposed model is then verified throughout the comparison of its nonlinear static analysis results with the experimental results of URM walls carried out by other researchers. The proposed model well captures the maximum strength, the initial stiffness, and their resulting load - displacement curves of the URM walls with reasonable resolution. Also, it is demonstrated that the analysis model is capable of predicting the failure modes of the URM walls.

A Study on the Seismic Behavior of Small-Size Reinforced Concrete Buildings in Korea (국내 소규모 철근콘크리트 건축물의 내진거동 고찰)

  • Kim, Taewan;Eom, Taesung;Kim, Chul-Goo;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.171-180
    • /
    • 2014
  • Since the execution of structural design by professional structural engineers is not mandatory for small-size buildings in Korea, structural design is conducted by architects or contractors resulting in concern about the seismic safety of the buildings. Therefore, the Korean Structural Engineers Association proposed dedicated structural design criteria in 2012. The criteria were developed based on a deterministic approach in which the structural members are designed only with information of story and span length of the buildings and without structural analyses. However, due to the short time devoted to their development, these criteria miss satisfactory basis and do not deal with structural walls popularly used in Korea. Accordingly, the Ministry of Land, Infrastructure and Transport launched a research on the 'development of structural performance enhancement technologies for small-size buildings against earthquakes and climate changes'.. As part of this research, this paper intends to establish direction for the preparation of deterministic structural design guidelines for seismic safety of domestic small-size reinforced concrete buildings. To that goal, a typical plan of these buildings is selected considering frames only and frames plus walls, and then design is conducted by changing the number of stories and span length. Next, the seismic performance is analyzed by nonlinear static pushover analysis. The results show that the structural design guidelines should be developed by classifying frames only and frames plus walls. The size and reinforcement of structural elements should be provided in the middle level of the current Korean Building Code and criteria for small buildings by considering story and span length for buildings with frames only, and determined by considering the shape and location of walls and the story and span length as well for buildings with frames plus walls. It is recommended that the design of walls should be conducted by reducing the amount of walls along with symmetrically located walls.