• Title/Summary/Keyword: Architectural Design Industry

Search Result 278, Processing Time 0.026 seconds

A Proposal of 3D Printing Service Platform for Construction Industry through case analysis (사례 분석을 통한 건설 3D 프린팅 서비스 플랫폼 제안)

  • Kim, Jongsung;Kim, Sun-Kyum;Seo, Myoung-Bae;Kim, Tae-Hoon;Ju, Ki-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.53-61
    • /
    • 2017
  • Recently, there has been an increase in the number of web-based three-dimensional (3D) printing-related service platforms, which allow consumers to collect 3D modeling data, make requests for production, and receive goods through a distribution service using the service platform. The application of 3D printing technology has been expanded to the construction field, yet no guidelines for the related service platform or operation examples can be found. Therefore, the functions of 10 web-based 3D printing service platforms actively used in other industries were investigated and analyzed in this study, and the analysis results were used as a guideline to develop a 3D printing service platform for the construction industry. In addition, the design, construction and distribution services to be equipped with the construction 3D printing service integration platform were presented by creating the driving scenario of the platform. As 3D printing technology develops, the overall construction and architectural paradigms for design, construction and distribution will change. To prepare for such changes and to pioneer the digital construction market in the future, the role of the 3D printing service platform is expected to increase continually.

Moisture Content Change and Heat Distribution Characteristics of Veneer Heated by Microwave (마이크로파 가열 단판의 함수율 변화 및 열분포 특성)

  • Shin, Ki-Hoon;Suh, Jin-Suk;Park, Cheul-Woo;Lim, Nam-Gi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.407-419
    • /
    • 2014
  • The analysis of shape before and after heating, Surface moisture content, Moisture weight change and surface heat distribution by fixed type microwave heating in forms of flat veneer and veneer roll of Korean pine, pitch pine, larch and yellow poplar was conducted. The results were as follows: In case of flat veneer, the quality after microwave heating was comparatively good, but it was somewhat warped. These phenomena may be due to transformation by nonuniform drying stress and stronger effect of local irradiation on the veneers when heating veneer owing to the characteristics of fixed type microwave equipment. In case of the features of roll-shaped veneer heated by microwave, the quality after heating was comprehensively excellent. Especially there was no warping unlike flat veneer. Heat distribution and diffusion were also very stable for roll-shaped veneer and such heat distribution had much influence on surface moisture content and moisture weight loss. Accordingly, the veneer roll would show sufficient drying efficiency in fixed type microwave equipment through a scrutinized examination on generating power and irradiation time according to species and thickness of veneer.

Identification of Combinatorial Factors Affecting Fatal Accidents in Small Construction Sites: Association Rule Analysis (연관규칙 기반 소규모 건설현장 사망재해 다중요인 분석)

  • Lee, Gangho;Lee, Chansik;Koo, Choogwan;Kim, Tae Wan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.4
    • /
    • pp.90-99
    • /
    • 2020
  • The construction industry is suffering from a large number of fatal accidents. As many field works are being conducted in a dangerous condition such as working at height and adverse weather, they are always exposed to safety accidents with high frequency and severity compared to other industries. Such risk is even larger in small construction sites, but studies that focus on combinatorial factors leading to fatal accidents in small construction sites are lacking. Thus, in order to reduce the fatal accidents in the construction industry, this study analyzed 1,438 occupational death accidents cases in small construction sites and, then, conducted the association rule analysis to extract ten combinatorial factors that frequently led to fatal accidents in small construction sites. Based on the extracted association rules, this study also discussed possible countermeasures to reduce the fatal accidents. The results were explained to experts, who agreed on the results of the study. This study contributes to the construction safety management theory by providing a detailed analysis of fatal accidents in small construction sites that can be used for developing and deploying safety policies and educations for small construction site workers.

Model Integration of Systems Design and Safety Analysis Processes for Systematic Design of Safety-Critical Systems (안전중시 시스템의 체계적인 설계를 위한 시스템 설계 및 안전 분석 활동 모델의 통합)

  • Kim, Chang-Won;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.363-368
    • /
    • 2016
  • In safety-critical systems (SCS), failure may result in accidents with serious damage to human beings and property. As systems become more complex and automated, the goal of acquiring safety has attracted increasing attention lately in the defense industry, as well as the rail, automotive, and aerospace industries, among others. As such, the Department of Defense and international organizations have established appropriate standards and guidelines for systems safety and design. To this end, there has been research on the processes, methods, and associated tools for safety design. However, those results do not seem to sufficiently utilize system architectural information. The purpose of this paper is to provide a more systematic approach to SCS design. To better identify potential hazards, design information at each level of system hierarchy is exploited. Based on the results, an integrated process model was developed by combining the processes of system design and safety analysis. As a case study, the resultant integrated process model was applied to the safety design of an automobile system, which shows useful results for safety evaluation.

A Study on the Effective Health Examination Center Distribution and Space Coordination using Agent based Model (행위자 기반 모형을 활용한 효율적 검진센터 서비스배분 및 공간조정에 관한 연구)

  • Kim, Suktae;Hong, Sachul
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.24 no.2
    • /
    • pp.15-25
    • /
    • 2018
  • Purpose: The important things in space plan of a screening center are improving the spatial awareness by space systemization and minimizing the examination time for customers, and reducing the required time of screening work and maximizing the capacity for the screening center. Therefore, we tried to solve the problem of improving spatial awareness and reducing the examination time by using the pedestrian based discrete event simulation at the minimum cost. Methods: We have analyzed the drawbacks and the supplement points by comparing the floor plan at the time of opening and the current floor plan. Based on the analysis, we propose an improved plan which changes the location of the examination rooms and the number of services, and we also verify the improved plan based on simulation analyses. Results: 1) Through the analyses, we derived the drawbacks of the floor plan at the time of opening, and we realized that the current floor plan reflects the drawbacks. 2) The major reasons of the long examination time are the human traffic jam and the occurrence of queues due to unreasonable allocation of services. 3) Through the discrete event simulation analyses, it was possible to specify the place of the queues manually so as to use the given space fairly. 4) Using the discrete event simulation, it was possible to reduce the examination time and to improve the spatial awareness effectively at the minimum cost. Implications: Although the proposed simulation methodology in this paper is an analysis of the existing screening center, we expect that the proposed methodology will be used to develop a more efficient architectural design process by pre-applying the method to the course of designing a screening center and finding the suitability of the proposed method with the matched number of services.

A Study on the Improvement of Engineering and Construction Supervision Guarantee System in Korea (국내 설계.감리 등 용역보증제도 현황 및 개선방안 연구)

  • Lee, Yong-Hee;Choi, Jae-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.3
    • /
    • pp.53-61
    • /
    • 2011
  • After several collapse accidents of large structures in the early 1990s in Korea, the government enacted a law that architectural, engineering and construction firms are obliged to have insurance for projects over a certain size. Particularly, with regard to insurance in design and construction supervision works (i.e. engineering insurance), although several operation-based problems were pointed out from practitioners, still little research has been done on analyzing current regnlartory and operational state and suggesting policy alternatives. Hence, this study applies Delphi technique to solicit current operational problems and propose a series of improvements on engineering insurance based on interview surveys targeting major market participants: municipalities, engineering firms, and insurance companies. Key findings culminate in adopting guarantee limits based on credit evaluation, abrogating joint surety, covering a loss of life, increasing insurance entrance fee, extending time covered, and etc. Reaching a consensus on the proposed alternatives between the market participants will form the foundation for sound developments of construction design and engineering industry.

The Development of the Movable-housing Planning Concept in Housing-architectural history of 20th Century (20 세기 주거건축사에 나타난 이동식 주거개념의 발전과정에 관한 연구)

  • Kim, Mi-Kyoung
    • Korean Institute of Interior Design Journal
    • /
    • v.17 no.2
    • /
    • pp.13-21
    • /
    • 2008
  • The purpose of this study is to analyze the development and characteristics of movable-housing planning concept. A document research method was used to analyze and classified the development of the movable-housing concept of 20th century. Through this study, the following conclusions have been reached; First, the origin of the movable-housing is from the prehistoric and traditional portable buildings, also due to the emergence of nomadic lifestyle using car traveling and mobile home in the 1920's. Second, the development of the movable-housing in 20th century was classified as follows; (1) In order to obtain the productivity and efficiency drawing from the industrialized-housing in the early of 1900s, movable furniture and flexibility was proposed. (2) American mobile home in 1920's, influenced by the development of car industry, was the most successful example of a factory-built building to be found in the world. (3) Dymaxion house and dome by R.B.Fuller, an aggregation of high-tech mechanical equipment, had a great impact on the development the concept of 'mobility' and influenced Archigram & Metabolist's movable capsule ideas in 1960's. (4) The lightweight materials such as plastic, duralumin and pneumatic structure were adopted for movable-housing in 1960's. Through this research, It is discovered that the stage of social development has close links with the developing aspects of movable-housing concepts. This study shows that the combination of three planning concepts such as flexible housing, mobile-housing and capsule will be more ideal in movable-housing planning rather than relying on just one type.

Quantitative assessment of depth and extent of notch brittle failure in deep tunneling using inferential statistical analysis

  • Lee, Kang-Hyun;Lee, In-Mo;Shin, Young-Jin
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.201-206
    • /
    • 2020
  • A stress-induced brittle failure in deep tunneling generates spalling and slabbing, eventually causing a v-shaped notch formation. An empirical relationship for the depth of the notch to the maximum tangential stress assuming an equivalent circular cross-section was proposed (Martin et al. 1999). While this empirical approach has been well recognized in the industry and used as a design guideline in many projects, its applicability to a non-circular opening is worth revisiting due to the use of equivalent circular profile. Moreover, even though the extent of the notch also contributes to notch failure, it has not been estimated to date. When the estimate of both the depth and the extent of notch are combined, a practical and economically justifiable support design can be achieved. In this study, a new methodology to assess the depth as well as the extent of notch failure is developed. Field data and numerical simulations using the Cohesion Weakening Frictional Strengthening (CWFS) model were collected and correlated with the three most commonly accepted failure criteria (σ13, Dismaxc, σdevcm). For the numerical analyses, the D-shaped tunnel was used since most civil tunnels are built to this profile. Inferential statistical analysis is applied to predict the failure range with a 95% confidence level. Considering its accuracy and simplicity, the new correlation can be used as an enhanced version of failure assessment.

A Study on the Development of the Problem Improvement Directions in Enhancing BIM Data Interoperability through IFC (IFC를 통한 BIM 데이터의 상호연동 시 문제점분석 및 개선방향 설정에 관한 연구)

  • Kim, Ji-Won;Ock, Jong-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.6
    • /
    • pp.88-98
    • /
    • 2009
  • Construction industries have increasingly utilized Building information Modeling (BIM) technologies. Interoperability - the capability for BIM data to run from one computer application to another in the life cycle of a project has become one of the principal research areas. Enhancing interoperability inevitably requires information structures that are standardized throughout the construction industries. As a candidate of the data exchange standard, Industry Foundation Classes (IFC) has been developed and several researches recently performed to measure its richness of digital data exchange. But doubts have been brought up whether IFC meets a sufficient level of interoperability since the research result revealed a number of cases of information misrepresentation and loss. This research presents the lessons learned from the interoperability tests of three widely used 3D design applications including Graphisoft's Archicad, Autodesk's Revit, and Bentley's Bentley Architecture. One building's architectural and structural design data were modeled with the three tools and exchanged through IFC respectively for interoperability test.

Investigating the performance of polymer cement resistance in football stadium construction

  • Yangguang Zhang
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.203-213
    • /
    • 2023
  • New techniques, technologies, and materials should be used to design and build sports stadiums. Since this century, much progress has been made in covering the roofs of sports stadiums, and the possibility of accurate computer calculation has been provided for stadiums, so by choosing a new structure, we can double the beauty and resistance of these stadiums. A stadium has an excellent and valuable design when its structure, shell, building, materials, and joinery follow a high architectural idea at all levels and scales. This article examines the mechanical performance of polymer cement strength in the construction of football stadiums, along with their structural knowledge in the form of the best examples in the world. Portland cement is one of the most used materials for constructing football stadiums. However, its production requires spending a lot of money, wasting energy, and damaging the environment. Considering the disadvantages in the production and consumption of concrete in different environments, it is necessary to find alternative materials. It should be used with cheaper, simpler technology, abundant primary resources, energy saving, less environmental damage, and better chemical and physical properties in concrete. High-strength concrete technology is considered a new development in the construction industry of concrete structures. In hardened concrete, strength and durability are two main factors, and as the compressive strength of concrete increases, concrete becomes more brittle. As a result, its tensile strength does not increase in proportion to the increase in compressive strength and has less strain tolerance. For this reason, the need to use is evident from the fibers in high-strength concrete. Fibers are used in concrete to increase tensile strength, prevent crack propagation, and significantly increase softness. The increase with the change of these resistances depends on the strength of concrete without fibers, the shape of fibers, and the percentage of fibers. This cement is obtained from the wastes of chemical and petrochemical industries and the wastes from coal combustion, which have the properties mentioned as substitutes for Portland cement.