• Title/Summary/Keyword: Arching effect

Search Result 138, Processing Time 0.03 seconds

A Study on the Pile Material Suited for Pile Supported Embankment Reinforced by Geosynthetics (토목섬유로 보강된 성토지지말뚝 구조에 적합한 말뚝재료의 개발)

  • Choi, Choong-Lak;Lee, Kwang-Wu;Kim, Eun-Ho;Jung, Ji-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.21-35
    • /
    • 2016
  • It is a current trend that the concrete track is applied for high speed railway. In the case of the railway embankment constructed on soft ground, the damage to concrete track which is sensitive to settlement such as distortion and deflection could be caused by very small amount of long term settlement. Pile Supported Embankment method can be considered as the effective method to control the residual settlement of the railway embankment on soft ground. The Geosynthetics is used inside of the embankment to maximize the arching effect transmitting the load of the embankment to the top of the piles. But, PHC piles that are generally used for bridge structures are also applied as the pile supporting the load of embankment concentrated by the effect of the Geosynthetics. That is very low efficiency in respect of pile material. So, in this study, the cast in place concrete pile was selected as the most suitable pile type for supporting the embankment by a case study and the optimum mixing condition of concrete using a by-product of industry was induced by performing the mixing designs and the compressive strength designs. And it is shown that the cast in place pile with the optimum mixing condition using the by-product of industry is 2.8 times more efficient than the PHC pile for the purpose of Pile Supported Embankment by the finite element analysis method.

A study on the field tests and development of quantitative two-dimensional numerical analysis method for evaluation of effects of umbrella arch method (UAM 효과 평가를 위한 현장실험 및 정량적 2차원 수치해석기법 개발에 관한 연구)

  • Kim, Dae-Young;Lee, Hong-Sung;Chun, Byung-Sik;Jung, Jong-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.57-70
    • /
    • 2009
  • Considerable advance has been made on research on effect of steel pipe Umbrella Arch Method (UAM) and mechanical reinforcement mechanism through numerical analyses and experiments. Due to long analysis time of three-dimensional analysis and its complexity, un-quantitative two-dimensional analysis is dominantly used in the design and application, where equivalent material properties of UAM reinforced area and ground are used, For this reason, development of reasonable, theoretical, quantitative and easy to use design and analysis method is required. In this study, both field UAM tests and laboratory tests were performed in the residual soil to highly weathered rock; field tests to observe the range of reinforcement, and laboratory tests to investigate the change of material properties between prior to and after UAM reinforcement. It has been observed that the increase in material property of neighboring ground is negligible, and that only stiffness of steel pipe and cement column formed inside the steel pipe and the gap between steel pipe and borehole contributes to ground reinforcement. Based on these results and concept of Convergence Confinement Method (CCM), two dimensional axisymmetric analyses have been performed to obtain the longitudinal displacement profile (LDP) corresponding to arching effect of tunnel face, UAM effect and effect of supports. In addition, modified load distribution method in two dimensional plane-strain analysis has been suggested, in which effect of UAM is transformed to internal pressure and modified load distribution ratios are suggested. Comparison between the modified method and conventional method shows that larger displacement occur in the conventional method than that in the modified method although it may be different depending on ground condition, depth and size of tunnel, types of steel pipe and initial stress state. Consequently, it can be concluded that the effect of UAM as a beam in a longitudinal direction is not considered properly in the conventional method.

Finite Element Analysis on the Behavior of Soyanggang Dam and its Comparison with Observed (소양강(昭陽江)댐의 거동(擧動)에 대한 유한요소해석(有限要素解析)과 실측치(實測値)와의 비교(比較))

  • Kim, Sang Kyu;Lim, Heui Dae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.141-150
    • /
    • 1987
  • The Soyanggang Dam completed in 1973 was well instrumented during construction period. The measured results for stresses and movements of the embankment have already been published elsewhere, but theoretical analyses have not been made until now. This study intends to analyze the stress and deformation behavior of the embankment numerically which have been subjected to the load of materials during construction and water load during impounding. The constitutive law used for the analyses is hyperbolic model developed by Duncan et al., and a nonlinear incremental finite element analysis simulating its contruction steps is. used in this study. Hyperbolic parameters for each Zone are estimated from literature. The results obtained from the theoretical analyses clearly show deformation characteristics and stress vectors in arbitrary section of the dam. The analytical results ate well agreed with the measured deformations at the maximum cross section, however, there are some discrepancy in horizontal movements and in stresses generated in the core zone. From the numerical analyses and its comparison with the measured values, it is charaterized that relatively large construction settlements occurred in core zone, overburden pressure in the core zone was considerably reduced by arching effect, and tension zones might occur near both abutments because of the large horizontal displacement.

  • PDF

Study on the Estimation of Safety Zone and the Movement of Ground at the Inter-Crossing Tunnel (교차터널에서의 지반거동 및 안전영역평가에 관한 연구)

  • Kim, Woo-Sung;Yoo, Dong-Uk;Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.491-502
    • /
    • 2008
  • A certain range of the original ground around the tunnel should be preserved to ensure structural safety of the tunnel when other structures are made around the tunnel, and thus this range is defined as safety zone of the tunnel. The main points to ensure the stability of an existing tunnel when constructing a new tunnel in an inter-crossing area are distance between two tunnels, size of the new tunnel, excavation method for the new tunnel, ground condition around the tunnel, and lining type of the existing tunnel etc. When the new tunnel is excavated above the existing tunnel, the existing tunnel is likely to suffer deformation at a crown zone, damage of arching effect, and live load of the new tunnel etc. On the other hand, when the new tunnel is excavated below the existing tunnel, the existing tunnel is likely to be damaged due to settlement. This study has been made on the behavior of the existing tunnel by means of model test and numerical analysis when the new tunnel is excavated below the existing tunnel. Safety zone of the tunnel was estimated by the results of strength/stress ratio obtained from numerical analysis, and the movement of ground was estimated by the model test. The results of earth pressure, ground displacements, and convergence of the tunnel obtained from model test were compared with those of numerical analysis, and show a similar trend.

Experimental study on the behavior of retaining wall according to underground excavation distance (지하굴착 이격거리에 따른 흙막이벽체 거동에 대한 실험적 연구)

  • Park, Jong-Deok;Ahn, Chang-Kyun;Kim, Do-Youp;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.155-164
    • /
    • 2016
  • The changes in earth pressure and ground settlement due to the underground excavation nearby the existing retaining wall according to the separation distance between underground excavation and retaining wall, were studied experimentally. A soil tank having 160 cm in length and 120 cm in height, was manufactured to simulate the underground excavation like tunnel by using 5 separated bottom walls. The variation of earth pressure was measured according to the excavation stages by using 10 separated right walls simulating the retaining wall. The results showed that the earth pressure was changed by the lowering of first bottom wall(B1), however the earth pressure was not changed significantly by the lowering of third bottom wall(B3) since B3 had sufficient separation distance from retaining wall. Lowering of first bottom wall(B1) induced the decrease of earth pressure in lower part of retaining wall, on the contrary, lowering of first bottom wall(B1) induced the increase of earth pressure in middle part of retaining wall proving the arching effect.

A study on the characteristics of shallow overburden railway tunnel behavior under the existing road (기존도로하부 저토피 통과구간 철도터널 거동특성에 관한 연구)

  • Seo, Yoon-sic;Kim, Yeon-deok;Moon, Gyeong-seon;Kim, Hyeob;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.1045-1058
    • /
    • 2017
  • This paper is a study on railway tunnel behavior characteristic of shallow overburden under the existing road. In order to understand the behavior characteristics of the ground deformation during tunnel excavation, a horizontal rod extensometers were installed in the passage area of the shallow overburden tunnel under the road, and the measurement and analysis were carried out. To compare the in situ measurement, three dimensional numerical analysis with ground condition and construction step was carried out using MIDAS NX. As a result of the field measurement, large preceding settlement occurred where the poor ground condition with shallow overburden excavation has been conducted. As a result of the numerical analysis, the largest settlement occurred at the shallow overburden point where the ground condition was poor. Therefore, in the shallow overburden section where the soil condition is poor and a sufficient depth can't be secured and the arching effect of the ground around the tunnel can't be expected, careful attention should be paid to the application of stiffness reinforcement measures and to minimize ground loosening.

A Case of the Shoulder-Hand Syndrome Caused by a Crush Injury of the Shoulder (견관절부 외상후 발생된 Shoulder-Hand Syndrome)

  • Jeon, Jae-Soo;Lee, Sung-Keun;Song, Hoo-Bin;Kim, Sun-Jong;Park, Wook;Kim, Sung-Yell
    • The Korean Journal of Pain
    • /
    • v.2 no.2
    • /
    • pp.155-166
    • /
    • 1989
  • Bonica defined, that reflex sympathetic dystrophy (RSD) may develop pain, vasomotor abnoramalities, delayed functional recovery, and dystrophic changes on an affected area without major neurologic injury following trauma, surgery or one of several diseased states. This 45 year old male patient had been crushed on his left shoulder by a heavily laden rear car, during his job street cleaning about 10 years ago (1978). At first the pain was localizea only to the site of injury, but with time, it spreaded from the shoulder to the elbow and hand, with swelling. X-ray studies in the local clinic, showed no bone abnormalities of the affected site. During about 10 years following the injury, the had recieved several types of treatments such as nonsteroidal analgesics, steroid injections into the glenoidal cavity (10 times), physical therapy, some oriental herb medicines, and acupuncture over a period of 1~3 months annually. His shoulder pain and it's joint dysfunction persisted with recurrent paroxysmal aggrevation because of being mismanaged or neglected for a sufficiently long period these fore permiting progression of the sympathetic imbalance. On July 14 1988 when he visited our clinic. He complained of burning, aching and had a hyperpathic response or hyperesthesia in touch from the shoulder girdle to the elbow and the hand. Also the skin of the affected area was pale, cold, and there was much sweating of the axilla and palm, but no edema. The shoulder girdle was unable to move due to joint pain with marked weakness. We confirmed skin temperatures $5^{\circ}C$ lower than those of the unaffected axilla, elbow and palm of his hand, and his nails were slightly ridged with lateral arching and some were brittle. On X-ray findings of both the shoulder AP & lateral view, the left humerus and joint area showed diffuse post-traumatic osteoporosis and fibrous ankylozing with an osteoarthritis-like appearance. For evaluating the RSD and it's relief of pain, the left cervical sympathetic ganglion was blocked by injecting 0.5% bupivacaine 5 ml with normal saline 5 ml (=SGB). After 15 minutes following the SGB, the clinical efficacy of the block by the patients subjective score of pain intensity (=PSSPI), showed a 50% reduction of his shoulder and arm pain, which was burning in quality, and a hyperpathic response against palpation by the examiner. The skin temperatures of the axilla and palm rose to $4{\sim}5^{\circ}C$ more than those before the SGB. He felt that his left face and upper extremity became warmer than before the SGB, and that he had reduced sweating on his axilla and his palm. Horner's sign was also observed on his face and eyes. But his deep shoulder joint pain was not improved. For the control of the remaining shoulder joint pain, after 45 minutes following the SGB, a somatic sensory block was performed by injecting 0.5% bupivacaine 6 ml mixed with salmon calcitonin, $Tridol^{(R)}$, $Polydyn^{(R)}$ and triamcinolone into the fossa of the acromioclavicular joint region. The clinical effect of the somatic block showed an 80% releif of the deep joint pain by the PSSPI of the joint motion. Both blocks, as the above mentioned, were repeated a total of 28 times respectively, during 6 months, except the steroid was used just 3 times from the start. For maintaining the relieved pain level whilst using both blocks, we prescribed a low dose of clonazepam, prazocin, $Etravil^{(R)}$, codeine, etodolac micronized and antacids over 6 months. The result of the treatments were as follows; 1) The burning, aching and hyperpathic condition which accompanied with vaosmotor and pseudomotor dysfunction, disappeared gradually to almost nothing, within 3 weeks from the starting of the blocks every other day. 2) The joint disability of the affected area was improved little by little within 6 months. 3) The post-traumatic osteoporosis, fibrous ankylosis and marginal sclerosis with a narrowed joint, showed not much improvement on the X-ray findings (on April 25, 1989) 10 months later in the follow-up. 4) Now he has returned to his job as a street cleaner.

  • PDF

Reinforcing Effects around Face of Soil-Tunnel by Crown & Face-Reinforcing - Large Scale Model Testing (천단 및 막장면 수평보강에 의한 토사터널 보강효과 - 실대형실험)

  • Kwon Oh-Yeob;Choi Yong-Ki;Woo Sang-Baik;Shin Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.71-82
    • /
    • 2006
  • One of the most popular pre-reinforcement methods of tunnel heading in cohesionless soils would be the fore-polling of grouted pipes, known as RPUM (reinforced protective umbrella method) or UAM (umbrella arch method). This technique allows safe excavation even in poor ground conditions by creating longitudinal arch parallel to the tunnel axis as the tunnel advances. Some previous studies on the reinforcing effects have been performed using numerical methods and/or laboratory-based small scale model tests. The complexity of boundary conditions imposes difficulties in representing the tunnelling procedure in laboratory tests and theoretical approaches. Full-scale study to identify reinforcing effects of the tunnel heading has rarely been carried out so far. In this study, a large scale model testing for a tunnel in granular soils was performed. Reinforcing patterns considered are four cases, Non-Reinforced, Crown-Reinforced, Crown & Face-Reinforced, and Face-Reinforced. The behavior of ground and pipes as reinforcing member were fully measured as the surcharge pressure applied. The influences of reinforcing pattern, pipe length, and face reinforcement were investigated in terms of stress and displacement. It is revealed that only the Face-Reinforced has decreased sufficiently both vertical settlement in tunnel heading and horizontal displacement on the face. Vertical stresses along the tunnel axis were concentrated in tunnel heading from the test results, so the heading should be reinforced before tunnel advancing. Most of maximum axial forces and bending moments for Crown-reinforced were measured at 0.75D from the face. Also it should be recommended that the minimum length of the pipe is more than l.0D for crown reinforcement.