• Title/Summary/Keyword: Archard wear equation

Search Result 23, Processing Time 0.015 seconds

A SIMPLIFIED METHOD TO PREDICT FRETTING-WEAR DAMAGE IN DOUBLE $90^{\circ}$ U-BEND TUBES

  • Choi, Seog-Nam;Yoon, Ki-Seok;Choi, Taek-Sang
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.616-621
    • /
    • 2003
  • Fluid-elastic instability is believed to be a cause of the large-amplitude vibration and resulting rapid wear of heat exchanger tubes when the flow velocity exceeds a critical value. For sub-critical flow velocities, the random turbulence excitation is the main mechanism to be considered in predicting the long-term wear of steam generator tubes. Since flow-induced interactions of the tubes with tube supports in the sub-critical flow velocity can cause a localized tube wear, tube movement in the clearance between the tube and tube support as well as the normal contact force on the tubes by fluid should be maintained as low as possible. A simplified method is used for predicting fretting-wear damage of the double $90^{\circ}$U-bend tubes. The approach employed is based on the straight single-span tube analytical model proposed by Connors, the linear structural dynamic theory of Appendix N-1300 to ASME Section III and the Archard's equation for adhesive wear. Results from the presented method show a similar trend compared with the field data. This method can be utilized to predict the fretting-wear of the double $90^{\circ}$U-bend tubes in steam generators.

  • PDF

Prediction of Shearing Die Life for Producing a Retainer using FE Analysis (유한요소해석을 이용한 리테이너 전단 금형 수명예측)

  • Lee, I.K.;Lee, S.Y.;Lee, S.K.;Jeong, M.S.;Seo, P.K.;Lee, K.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.264-271
    • /
    • 2015
  • In the current study, a method was proposed to quantitatively predict the wear and fatigue life of a shearing die in order to determine an effective replacement period for the die. The shearing die model of a retainer manufacturing process was used for the proposed method of quantitative life prediction. The retainer is produced through shearing steps, such as piercing and notching. The shearing die of the retainer is carefully controlled because the dimensional accuracy of the retainer is critical. The fatigue life for the shearing die was predicted using ANSYS considering S-N curves of STD11 and Gerber’s equation. The wear life for the shearing die was predicted using DEFORM-3D considering the Archard’s wear model. Experimental shearing of the retainer was conducted to verify the effectiveness of the proposed method for predicting die life. The fatigue failure of the shearing die was macroscopically measured. The wear depth was measured using a 3D coordinate measuring machine. The results showed that the wear and fatigue life in the FE analysis agree well with the experimental results.

Friction Power Loss Reduction for a Marine Diesel Engine Piston (박용엔진 피스톤 스커트 프로파일 변경에 의한 마찰손실(FMEP) 저감 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.132-139
    • /
    • 2016
  • The piston of a marine diesel engine works under severe conditions, including a combustion pressure of over 180 bar, high thermal load, and high speed. Therefore, the analyses of the fatigue strength, thermal load, clamping (bolting) system and lubrication performance are important in achieving a robust piston design. Designing the surface profile and the skirt ovality carefully is important to prevent severe wear and reduce frictional loss for engine efficiency. This study performs flexible multi-body dynamic and elasto-hydrodynamic (EHD) analyses using AVL/EXCITE/PU are performed to evaluate tribological characteristics. The numerical techniques employed to perform the EHD analysis are as follows: (1) averaged Reynolds equation considering the surface roughness; (2) Greenwood_Tripp model considering the solid_to_solid contact using the statistical values of the summit roughness; and (3) flow factor considering the surface topology. This study also compares two cases of skirt shapes with minimum oil film thickness, peak oil film pressure, asperity contact pressure, wear rate using the Archard model and friction power loss (i.e., frictional loss mean effective pressure (FMEP)). Accordingly, the study compares the calculated wear pattern with the field test result of the piston operating for 12,000h to verify the quantitative integrity of the numerical analysis. The results show that the selected profile and the piston skirt ovality reduce friction power loss and peak oil film pressure by 7% and 57%, respectively. They also increase the minimum oil film thickness by 34%.