• 제목/요약/키워드: Arch concrete

검색결과 209건 처리시간 0.025초

단경간 폐복식 아치교의 축선에 관한 연구 (A Study on the Axis Line of Short Span Filled Spandrel Arch Bridge)

  • 구민세;황윤국;조현준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.95-100
    • /
    • 1990
  • The behavior of short span filled spandrel arch bridge of 10 and 21 m span with various axis line, rise and backill height were investigated under the design loads(self weight, earth pressure, temperature load, live load, etc). Even though the behaviors of arch were known as relatively complicated, the followings can be concluded within the limits of this study. The design value of arch bridge increase as the rise decreases, the effects of temperature load become dominant for the design of arch bridge, and governing design factors are occured at springing.

  • PDF

철근콘크리트보에서의 아취현상에 대한 연구 (Arch Action in Reinforced Concrete Beams)

  • 김우;김대중;모귀석;고광일
    • 콘크리트학회지
    • /
    • 제6권2호
    • /
    • pp.180-187
    • /
    • 1994
  • 철근콘크리트보에서의 아취작용에 대한 현상을 파악하기 위해 전단지간 대 유효높이의 비 (a/b), 철근비, 전단철근의 유무등을 변수로 하여 총 16개의 시험체를 제작하여 실험하였다. 실험결과, 철근콘크리트보에서 아취현상은 최초로 보에 휨균열이 발생되면서 시작되고, 휨균열이 전단지간 중앙위치까지 발생되면 아취현상이 현저해져 보의 전체적 거동을 지배하는 것으로 나타났다. 철근콘크리트보의 전체적 거동이 아취작용에 이해 주로 지배되면, 전단지간내에서 측정된 철근인장력은 계산된 철근인장력보다 휠씬 크게 나타났다. 철근콘크리트보에서 아취현상은 지점쪽에 가까울수록, 철근비가 낮을수록 헌저하고, 전단보강을 함으로서 아취현상은 작아졌다. 철근콘크리트보에서 아취현상은 a/b가 작아질수록 증가되고, a/b가 3이하에서는 아취현상이 지배적이었다. 전단보강이 안된 a/b가 3이하의 보에서는 최종하중단계에서 타이드 아취현상이 현저하여 철근 길이\ulcorner향에 따른 철근인장력은 거의 동일한 값을 나타냈다.

아치형 복부판 보강재가 설치된 플레이트거더 강합성교의 구조적 거동특성 (Structural Characteristics of Steel-Concrete Composite Plate Girder with Arch-Type Web Stiffener)

  • 우상벽;유종호;이홍규;원용석;김선희;윤순종
    • 복합신소재구조학회 논문집
    • /
    • 제6권4호
    • /
    • pp.1-7
    • /
    • 2015
  • In this paper, we present the result of analytical investigation pertaining to the structural behavior of steel-concrete composite plate girder with arch-type web stiffener. In the arch-type web stiffener located in the compression side of web, infill concrete is cast to strengthen the arch-type stiffener and also to exert resisting force against compression force. This type of composite steel-concrete plate girder bridge is built and is in service. To understand the behavior thoroughly, analytical parametric study was conducted by using the finite element method. As a result it was found that the effect of arch-type stiffener with infill concrete is considerable for the design of such type composite girder bridge.

Experimental study on creep behavior of fly ash concrete filled steel tube circular arches

  • Yan, Wu T.;Han, Bing;Zhang, Jin Q.;Xie, Hui B.;Zhu, Li;Xue, Zhong J.
    • Steel and Composite Structures
    • /
    • 제27권2호
    • /
    • pp.185-192
    • /
    • 2018
  • Fly ash can significantly improve concrete workability and performance, and recycling fly ash in concrete can contribute to a cleaner environment. Since fly ash influences pozzolanic reactions in concrete, mechanical behaviors of concrete containing fly ash differ from traditional concrete. Creep behaviors of fly ash concrete filled steel tube arch were experimentally investigated for 10% and 30% fly ash replacement. The axes of two arches are designed as circular arc with 2.1 m computed span, 0.24 m arch rise, and their cross-sections are all in circular section. Time dependent deflection and strain of loading and mid-span steel tube were measured, and long term deflection of the model arch with 10% fly ash replacement was significantly larger than with 30% replacement. Considering the steel tube strain, compressive zone height, cross section curvature, and internal force borne by the steel tube, the compressive zone height and structural internal forces increased gradually over time due to concrete creep. Increased fly ash content resulted in more significant neutral axis shift. Mechanisms for internal force effects on neutral axis height were analyzed and verified experimentally.

보강된 이음부가 적용된 조립식 프리캐스트 콘크리트 아치의 단면 강도 평가 (Strength Evaluation on Sectional Members of Prefabricated Precast Concrete Arch with Reinforced Joint)

  • 주상훈;정철헌;배재현
    • 대한토목학회논문집
    • /
    • 제34권5호
    • /
    • pp.1363-1372
    • /
    • 2014
  • 선행연구에서 제안된 조립식 프리캐스트 콘크리트 아치의 구조성능이 실험적으로 평가되었다. 본 연구에서는 이에 대하여 재료 및 접촉 비선형을 고려한 유한요소해석을 수행하였으며, 실험결과와 비교하여 콘크리트 블록 간의 마찰계수를 결정하였다. 아치부재 단면의 강도를 평가하기 위해 탄성해석으로 단면력을 산정하여 이를 단면의 공칭강도와 비교하였다. 모든 실험체에서 평가된 최대 하중은 부재단면의 공칭강도를 상회하였으며, 실험과 유사한 결과를 보였다. 따라서 탄성해석과 단면의 극한강도모델에 의한 방법은 설계시 콘크리트 블록과 보강된 이음부로 구성된 조립식 프리캐스트 콘크리트 아치의 단면 강도를 효과적으로 평가할 수 있을 것으로 판단된다.

Assessment of masonry arch bridges retrofitted by sprayed concrete under in-plane cyclic loading

  • Mahdi Yazdani;Mehrdad Zirakbash
    • Structural Monitoring and Maintenance
    • /
    • 제11권1호
    • /
    • pp.57-70
    • /
    • 2024
  • Masonry arch bridges as a vital infrastructure were not designed for seismic loads. Given that masonry arch bridges are made up of various components, their contribution under the seismic actions can be very undetermined and each of these structural components can play a different role in energy dissipation. Iran is known as a high-risk area in terms of seismic excitations and according to the seismic hazard zoning classification of Iran, most of these railway infrastructures are placed in the high and very high seismicity zones or constructed near the major faults. Besides, these ageing structures are deteriorated and thus in recent years, some of these bridges using various retrofitting approaches, including sprayed concrete technique are strengthened. Therefore, investigating the behavior of these restored structures with new characteristics is very significant. The aim of this study is to investigate the cyclic in-plane performance of masonry arch bridges retrofitted by sprayed concrete technique through the finite element simulation. So, by considering the fill-arch interaction, the nonlinear behavior of a bridge has been investigated. Finally, by extracting the hysteresis and enveloping curves of the retrofitted and non-retrofitted bridge, the effect of strengthening on energy absorption and degradation of material has been investigated.

Blast analysis of concrete arch structures for FRP retrofitting design

  • Nam, Jin-Won;Kim, Ho-Jin;Yi, Na-Hyun;Kim, In-Soon;Kim, Jang-Ho Jay;Choi, Hyung-Jin
    • Computers and Concrete
    • /
    • 제6권4호
    • /
    • pp.305-318
    • /
    • 2009
  • Fiber Reinforced Polymer (FRP) is widely used for retrofitting concrete structures for various purposes. Especially, for the retrofitting of concrete structures subjected to blast loads, FRP is proven to be a very effective retrofitting material. However, a systematic design procedure to implement FRP for concrete structure retrofitting against blast loads does not exist currently. In addition, in case of concrete structures with inarticulate geometrical boundary conditions such as arch structures, an effective analysis technique is needed to obtain reliable results based on minimal analytical assumptions. Therefore, in this study, a systematic and efficient blast analysis procedure for FRP retrofitting design of concrete arch structure is suggested. The procedure is composed of three sequential parts of preliminary analysis, breach and debris analysis, and retrofit-material analysis. Based on the suggested procedure, blast analyses are carried out by using explicit code, LS-DYNA. The study results are discussed in detail.

Creep performance of concrete-filled steel tubular (CFST) columns and applications to a CFST arch bridge

  • Yang, Meng-Gang;Cai, C.S.;Chen, Yong
    • Steel and Composite Structures
    • /
    • 제19권1호
    • /
    • pp.111-129
    • /
    • 2015
  • This paper first presents an experimental study of twelve specimens for their creep performance, including nine concrete-filled steel tubular (CFST) columns and three plain concrete columns, subjected to three levels of sustained axial loads for 1710 days. Then, the creep strain curves are predicted from the existing creep models including the ACI 209 model, the MC 78 model, and the MC 90 model, and further a fitted creep model is obtained by experimental data. Finally, the creep effects of a CFST arch bridge are analyzed to compare the accuracy of the existing creep models. The experimental results show that the creep strains in CFST specimens are far less than in the plain concrete specimens and still increase after two years. The ACI 209 model outperforms the MC 78 model and the MC 90 model when predicting the creep behavior of the CFST specimens. Analysis results indicate that the creep effects in the CFST arch bridge are significant. The deflections and stresses calculated by the ACI 209 model are the closest to the fitted model in the three existing models, demonstrating that the ACI 209 model can be used for creep analysis of CFST arch bridges and can meet the engineering accuracy requirement when lack of experimental data.

An efficient three-dimensional fluid hyper-element for dynamic analysis of concrete arch dams

  • Lotfi, Vahid
    • Structural Engineering and Mechanics
    • /
    • 제24권6호
    • /
    • pp.683-698
    • /
    • 2006
  • The accurate dynamic analysis of concrete arch dams relies heavily on employing a three-dimensional semi-infinite fluid element. The usual method for calculating the impedance matrix of this fluid hyper-element is dependent on the solution of a complex eigen-value problem for each frequency. In the present study, an efficient procedure is proposed which simplifies this procedure amazingly, and results in great computational time saving. Moreover, the accuracy of this technique is examined thoroughly and it is concluded that efficient procedure is incredibly accurate under all practical conditions.

Shear Resistant Mechanism into Base Components: Beam Action and Arch Action in Shear-Critical RC Members

  • Jeong, Je-Pyong;Kim, Woo
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권1호
    • /
    • pp.1-14
    • /
    • 2014
  • In the present paper, a behavioral model is proposed for study of the individual contributions to shear capacity in shear-critical reinforced concrete members. On the basis of the relationship between shear and bending moment (V = dM/dx) in beams subjected to combined shear and moment loads, the shear resistant mechanism is explicitly decoupled into the base components-beam action and arch action. Then the overall behavior of a beam is explained in terms of the combination of these two base components. The gross compatibility condition between the deformations associated with the two actions is formulated utilizing the truss idealization together with some approximations. From this compatibility condition, the ratio of the shear contribution by the tied arch action is determined. The performance of the model is examined by a comparison with the experimental data in literatures. The results show that the proposed model can explain beam shear behavior in consistent way with clear physical significance.