• Title/Summary/Keyword: ArcToolbox

Search Result 6, Processing Time 0.018 seconds

The Coordinate Transformation of Digital Geological Map in accordance with the World Geodetic System (A Case Study of Chungju and Hwanggang-ri Sheets using ArcToolbox) (수치지질도의 세계측지계 좌표변환 (ArcToolbox를 이용한 충주 및 황강리 도폭의 사례))

  • Oh, Hyun-Joo
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.537-543
    • /
    • 2015
  • In Korea, the use of world geodetic system(WGS) has been mandated in year 2010. Accordingly, the national geographic information institute(NGIS) provides the digital maps according to the WGS. Nevertheless, most of the digital geological maps are still based on the Tokyo Datum(TD). Therefore, users should conduct 2D/3D geological spatial analysis after converting the coordinates of digital geological maps to WGS. The conversion process is often tedious and troublesome for certain users. Therefore, in this study, the method to transform coordinate from TD to WGS using ArcToolbox is introduced for users not familiar with the process. For a better appreciation, the Chungju and Hwanggang-ri digital sheets of 1:50,000 scale was chosen as an example. Here, Chungju and Hwanggang-ri sheets were defined based on the TD-central origin and TD-east origin, respectively. The two sheets were merged after the transformation of TD-east origin of Hwanggang-ri to the TD-central origin, and eventually transformed to WGS-central origin. The merged map was found to match exactly with the digital map(Daeso 367041). The problem of coordinate determination in previous digital geological maps was solved effectively. The proposed method is believed to be helpful to 2D/3D geological spatial analysis of various geological thematic maps.

Development of Automatic Extraction Model of Soil Erosion Management Area using ArcGIS Model Builder (ArcGIS Model Builder를 이용한 토양유실 우선관리 지역 선정 자동화 모형 개발)

  • Kum, Dong-Hyuk;Choi, Jae-Wan;Kim, Ik-Jae;Kong, Dong-Soo;Ryu, Ji-Chul;Kang, Hyun-Woo;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.1
    • /
    • pp.71-81
    • /
    • 2011
  • Due to increased human activities and intensive rainfall events in a watershed, soil erosion and sediment transport have been hot issues in many areas of the world. To evaluate soil erosion problems spatially and temporarily, many computer models have been developed and evaluated over the years. However, it would not be reasonable to apply the model to a watershed if topography and environment are different to some degrees. Also, source codes of these models are not always public for modification. The ArcGIS model builder provides ease-of-use interface to develop model by linking several processes and input/output data together. In addition, it would be much easier to modify/enhance the model developed by others. Thus, simple model was developed to decide soil erosion hot spot areas using ArcGIS model builder tool in this study. This tool was applied to a watershed to evaluate model performance. It was found that sediment yield was estimated to be 13.7 ton/ha/yr at the most severe soil erosion hot spot area in the study watershed. As shown in this study, the ArcGIS model builder is an efficient tool to develop simple models without professional programming abilities. The model, developed in this study, is available at http://www.EnvSys.co.kr/~sateec/toolbox for free download. This tool can be easily modified for further enhancement with simple operations within ArcGIS model builder interface. Although very simple soil erosion and sediment yield were developed using model builder and applied to study watershed for soil erosion hot spot area in this study. The approaches shown in this study provides insights for model development and code sharing for the researchers in the related areas.

Design and Implementation of Invisible Depth Analysis (불가시심도분석의 설계 및 구현)

  • Lee, Sang-Bok;Lee, Seung-Yeob;Ha, Jae-Myung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.3
    • /
    • pp.66-75
    • /
    • 2009
  • The purpose of this paper is design and implement the invisible depth analysis tools. The developed algorithm was basically used reference plan method and to remove first step errors we mix-used point-to-point method. and we consider error due to curvature and refraction for large scale analysis. The final algorithm was developed as ArcToolBox tools, which can be considered convenient and public use as well; as result it reduced experimental errors as compared with conventional method and makes possible high resolution analysis for large scale site.

  • PDF

A Study about Analysis of Weld Distortion using Genetic Algorithm (유전적 알고리듬을 이용한 용접변형 해석에 관한 연구)

  • Kim, Ill-Soo;Kim, Hak-Hyoung;Jang, Han-Kee;Kim, Hee-Jin;Kwak, Sung-Kyu;Ryoo, Hoi-Soo;Shim, Ji-Yeon
    • Journal of Welding and Joining
    • /
    • v.27 no.4
    • /
    • pp.54-59
    • /
    • 2009
  • In the process to manufacture for metallic structures, control of welding deformation is one of an important problems connected with reliability of the manufactured structures so that welding deformation should be measured and controlled with quickly and actively. Also, welding parameters which have as lot of effects on welding deformation such as arc voltage, welding current and welding speed can also be controlled. The objectives for this study were to develop a simple 2-D FEM to calculate not only the transient thermal histories but also the sizes of fusion and heat-affected zone (HAZ) in multi pass arc welds including the butt and fillet weld type with dissimilar thickness, and to concentrate on a developed model for the finding the parameters of Godak's moving heat source model based on a GA. The developed model includes a GA program using MATLB and GA toolbox, and a batch mode thermal model using ANSYS software. Not only the thermal model was verified by comparison with Goldak's work but also the developed model was validated with molten zone section experimental data.

A review of recent research advances on structural health monitoring in Western Australia

  • Li, Jun;Hao, Hong
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.33-49
    • /
    • 2016
  • Structural Health Monitoring (SHM) has been attracting numerous research efforts around the world because it targets at monitoring structural conditions and performance to prevent catastrophic failure, and to provide quantitative data for engineers and infrastructure owners to design a reliable and economical asset management strategy. In the past decade, with supports from Australian Research Council (ARC), Cooperative Research Center for Infrastructure and Engineering Asset Management (CIEAM), CSIRO and industry partners, intensive research works have been conducted in the School of Civil, Environmental and Mining Engineering, University of Western Australia and Centre for Infrastructural Monitoring and Protection, Curtin University on various techniques of SHM. The researches include the development of hardware, software and various algorithms, such as various signal processing techniques for operational modal analysis, modal analysis toolbox, non-model based methods for assessing the shear connection in composite bridges and identifying the free spanning and supports conditions of pipelines, vibration based structural damage identification and model updating approaches considering uncertainty and noise effects, structural identification under moving loads, guided wave propagation technique for detecting debonding damage, and relative displacement sensors for SHM in composite and steel truss bridges. This paper aims at summarizing and reviewing the recent research advances on SHM of civil infrastructure in Western Australia.

Development of Mean Stand Height Module Using Image-Based Point Cloud and FUSION S/W (영상 기반 3차원 점군과 FUSION S/W 기반의 임분고 분석 모듈 개발)

  • KIM, Kyoung-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.169-185
    • /
    • 2016
  • Recently mean stand height has been added as new attribute to forest type maps, but it is often too costly and time consuming to manually measure 9,100,000 points from countrywide stereo aerial photos. In addition, tree heights are frequently measured around tombs and forest edges, which are poor representations of the interior tree stand. This work proposes an estimation of mean stand height using an image-based point cloud, which was extracted from stereo aerial photo with FUSION S/W. Then, a digital terrain model was created by filtering the DSM point cloud and subtracting the DTM from DSM, resulting in nDSM, which represents object heights (buildings, trees, etc.). The RMSE was calculated to compare differences in tree heights between those observed and extracted from the nDSM. The resulting RMSE of average total plot height was 0.96 m. Individual tree heights of the whole study site area were extracted using the USDA Forest Service's FUSION S/W. Finally, mean stand height was produced by averaging individual tree heights in a stand polygon of the forest type map. In order to automate the mean stand height extraction using photogrammetric methods, a module was developed as an ArcGIS add-in toolbox.