• Title/Summary/Keyword: ArcSATEEC

Search Result 13, Processing Time 0.025 seconds

Soil Erosion and Sediment Yield Reduction Analysis with Land Use Conversion from Illegal Agricultural Cultivation to Forest in Jawoon-ri, Gangwon using the SATEEC ArcView GIS (SATEEC ArcView GIS를 이용한 홍천군 자운리 유역 임의 경작지의 산림 환원에 따른 토양유실 및 유사저감 분석)

  • Jang, Won-Seok;Park, Youn-Shik;Kim, Jong-Gun;Kim, Ik-Jae;Mun, Yu-Ri;Jun, Man-Sig;Lim, Kyoung-Jae
    • Journal of Environmental Policy
    • /
    • v.8 no.1
    • /
    • pp.73-95
    • /
    • 2009
  • The fact that soil loss causing to increase muddy water and devastate an ecosystem has been appearing upon a hot social and environmental issues which should be solved. Soil losses are occurring in most agricultural areas with rainfall-induced runoff. It makes hydraulic structure unstable, causing environmental and economical problems because muddy water destroys ecosystem and causes intake water deterioration. One of three severe muddy water source areas in Soyanggang-dam watershed is Jawoon-ri region, located in Hongcheon county. In this area, many cash-crops are planted at illegally cultivated agricultural fields, which were virgin forest areas. The purpose of this study is to estimate soil loss with current land uses(including illegal cash-crop cultivation) and soil loss reduction with land use conversion from illegal cultivation back to forest. In this study, the Sediment Assessment Tool for Effective Erosion Control(SATEEC) ArcView GIS was utilized to assess soil erosion. If the illegally cultivated agricultural areas are converted back to forest, it would be expected to 17.42% reduction in soil loss. At the Jawoon-ri region, illegally cultivated agricultural areas located at over 30% and 15% slopes take 47.48 ha(30.83%) and 103.64 ha(67.29%) of illegally cultivated agricultural fields respectively. If all illegally cultivated agricultural fields are converted back to forest, it would be expected that 17.41% of soil erosion and sediment reduction, 10.86% reduction with forest conversion from 30% sloping illegally agricultural fields, and 16.15% reduction with forest conversion from 15% sloping illegally agricultural fields. Therefore, illegally cultivated agricultural fields located at these sloping areas need to be first converted back to forest to maximize reductions in soil loss reduction and muddy water outflow from the Jawoon-ri regions.

  • PDF

Development of Automatic Extraction Model of Soil Erosion Management Area using ArcGIS Model Builder (ArcGIS Model Builder를 이용한 토양유실 우선관리 지역 선정 자동화 모형 개발)

  • Kum, Dong-Hyuk;Choi, Jae-Wan;Kim, Ik-Jae;Kong, Dong-Soo;Ryu, Ji-Chul;Kang, Hyun-Woo;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.1
    • /
    • pp.71-81
    • /
    • 2011
  • Due to increased human activities and intensive rainfall events in a watershed, soil erosion and sediment transport have been hot issues in many areas of the world. To evaluate soil erosion problems spatially and temporarily, many computer models have been developed and evaluated over the years. However, it would not be reasonable to apply the model to a watershed if topography and environment are different to some degrees. Also, source codes of these models are not always public for modification. The ArcGIS model builder provides ease-of-use interface to develop model by linking several processes and input/output data together. In addition, it would be much easier to modify/enhance the model developed by others. Thus, simple model was developed to decide soil erosion hot spot areas using ArcGIS model builder tool in this study. This tool was applied to a watershed to evaluate model performance. It was found that sediment yield was estimated to be 13.7 ton/ha/yr at the most severe soil erosion hot spot area in the study watershed. As shown in this study, the ArcGIS model builder is an efficient tool to develop simple models without professional programming abilities. The model, developed in this study, is available at http://www.EnvSys.co.kr/~sateec/toolbox for free download. This tool can be easily modified for further enhancement with simple operations within ArcGIS model builder interface. Although very simple soil erosion and sediment yield were developed using model builder and applied to study watershed for soil erosion hot spot area in this study. The approaches shown in this study provides insights for model development and code sharing for the researchers in the related areas.

Estimation of Soil Erosion and Sediment Yield in Mountainous Stream (산지형 하천의 토양침식 및 토사유출량 산정)

  • Ko, Jae-Wook;Yang, Sung-Kee;Yang, Won-Seok;Jung, Woo-Yeol;Park, Cheol-Su
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.599-608
    • /
    • 2013
  • Jeju island, which is located along the moving path of typhoon, suffers from flooding and overflow by torrential rain. So abrupt runoff occurring, damages of downstream farm field and shore culturing farms are increasing. In this study, Oaedo stream, one of the mountainous streams on Jeju island, was selected as the basin of study subject and was classified into 3 sub-basins, and after the characteristics of subject basin, the soil erosion amount and the sediment delivery of the stream by land usage distribution were estimated with the use of SATEEC ArcView GIS, the sediment yield amount of 2000 and 2005 was analyzed comparatively. As a result of estimating the sediment yield amount of 2000, the three sub-basins were respectively 12,572.7, 14,080 and 157,761 tons/year. and sediment yield amounts were estimated as 35,172.9, 5,266 and 258,535 tons/year respectively in 2005. The soil erosion and sediment yield amount of 2005 using single storm rainfall were estimated high compared with 2000, but for sub-basin 2, the values rather decreased due to changes in land use, and the land coverage of 2005, since there are many classifications of land usage compared with 2000, enabling to reflect more accurate land usage condition, could deduce appropriate results. It is anticipated that such study results can be utilized as basic data to propose a direction to predict the amount of sediment yield that causes secondary flooding damage and deteriorates water quality within detention pond and grit chamber, and take action against damages in the downstream farm field and shore culturing farms.